
Alan Thorn

•
•

•

•
•

•

TECHNOLOGY IN ACTION™

Pro Unity Game
Development
with C#
REFINE YOUR UNITY DEVELOPMENT SKILLS

WHILE BUILDING A CROSS-PLATFORM

FIRST-PERSON SHOOTER WITH C# AND UNITY

www.itbookshub.com

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.itbookshub.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author ...xi

About the Technical Reviewer ...xiii

Acknowledgments .. xv

Introduction .. xvii

Chapter 1: Designing and Preparing ■ ..1

Chapter 2: Getting Started ■ ...37

Chapter 3: Event Handling ■ ...81

Chapter 4: Power-Ups and Singletons ■ ...113

Chapter 5: Player Controller ■ ..147

Chapter 6: Weapons ■ ...179

Chapter 7: Enemies ■ ..217

Chapter 8: Graphical User Interfaces ■ ..255

Chapter 9: Handling Persistent Data ■ ...281

Chapter 10: Refinements and Improvements ■ ..303

Index ...319

www.itbookshub.com

http://www.allitebooks.org

xvii

Introduction

One thing I really love about the games industry today is its “openness” compared to many

industries. To start out in the games industry you don’t need a degree. All you need is a computer.

And an Internet connection. If you log on online right now, you can immediately visit web sites

such as Blender, GIMP, Inkscape, and (of course) Unity to get access to professional-grade game

development software completely free of charge! The result is that almost anybody in any place on

any budget, from any background and at any age, can sit at a computer and be a game developer

right now.

Of course, none of that openness guarantees you’ll automatically know how to use the tools,

or that you’ll even like the results you get from them. You need to bring a certain something, an

understanding, to the tools to fully realize their power and potential in practice. To do that, you’ll

need to develop experience and to refine your knowledge, and to learn techniques and workflows

using real-world examples, targeting your software of choice directly.

This book focuses on Unity development specifically. And when it comes to Unity development,

there’s one area where developers feel troubled or somewhat lacking in power. That area is in

C# scripting. The general feel is that so much of the C# tutorials and guides out there today are

so abstract and formal that it’s difficult to see how all of it should come together and be applied

properly in real-world cases to do what you need to do to give your games that professional edge.

You already know about variables, functions, loops, enumerations, and the fundamentals. But

what you need is something to take you further, to help you see how all these core features can be

combined in creative ways to produce a real-world, working game. The kind of game you can not

only play but study and see how it all comes together. This book aims to fill that need so you can

become a more powerful game developer.

What Is This Book About?
This book will show you how to create a small but complete first-person shooter game in the Unity

engine, step by step. In particular it’ll focus strongly on C# scripting, and on a range of related

ideas and techniques, for getting professional-grade results. We’ll explore a lot of ground, including

level design, vectors and mathematics, line-of-sight calculations, pathfinding and navigation,

www.itbookshub.com

http://www.allitebooks.org

xviii Introduction

artificial intelligence, state machines, weapon creation, trajectories and paths, and load-and-save

functionality, as well as a lot more! We’ll see things not just from a more abstract and theoretical

standpoint, but we’ll see how theory is applied in real-world cases to get work done, gradually

piecing together a complete game we can play and enjoy, and also extend upon and improve. The

aim is to show you some real-world applications of C# scripting that you can take away to use on

your own projects, achieving your creative vision more easily and effectively.

There are, of course, many things we won’t cover here. Specifically, we’ll be focusing only on C#

scripting, and not on other languages such as JavaScript or Boo. That decision should not be taken

as a negative judgment of those languages. Indeed, all of them are powerful and versatile in their

own ways. But it simply reflects what most people are seeking (as I see it) when they approach Unity

seeking to extend their scripting skills.

Additionally, we won’t be covering C# basics, such as variables, functions, and loops. I’ll assume

you already know that stuff. Further, although we’ll cover some level and game-design issues as

we start out with our game project in Chapters 1 and 2, we won’t be going too far in depth on that

subject, as it’s covered amply elsewhere and because the main focus here is on C# and scripting

specifically.

And finally, we won’t be covering every aspect of the C# language or every possible way it can be

used. This is for the simple reason that no book could hope to do that, just as no English dictionary

can tell you about every possible combination of words or every possible application of them. This

book covers a specific set of C# features in a specific set of ways. The idea is that by showing you

specific cases and specific applications, you can see how the general techniques apply to your own

games.

Who Is This Book For?
Every technical book is written with a target audience in mind. That is, it’s written for a specific

“type” of reader. This means that when writing the book, I, the author, must make assumptions about

you, the reader. The assumptions are about the book-relevant topics I think you’ll already know,

before even starting to read this book. Specifically, I’ll assume you know the following:

How to use the Unity Editor to import assets and build levelsnn

How to create script files and write some basic code in C#nn

How to use fundamental programming concepts like variables, functions, loops, nn

and conditional statements

How to debug games using the Unity debugging toolsnn

However, this book may not be for you if you’re completely new to game development, or if this is

your first time using Unity, or if you’re completely new to programming specifically. In any of these

cases, I strongly recommend your picking up an introductory title before continuing with this book,

to ensure you get the most from it.

www.itbookshub.com

http://www.allitebooks.org

xixIntroduction

How Should This Book Be Read?
This book has been written to be a complete C# scripting course. For this reason, you’ll probably

get the most from it by reading it from start to end, chapter by chapter, consulting the source code

and project files along the way. Further, it’d be really great if you could read this book while seated at

the computer with Unity in front of you, along with the book files, to make comparisons, testing, and

checking easier. You can read it on a train or plane or elsewhere and still benefit; but the greatest

benefit will come if you can readily switch between the book and your computer, following the steps

and instructions, and completing the exercises. There’s a lot to do in this book; it’s not intended to

simply be read. It expects you to follow along and join in.

What Are the Companion Files?
As mentioned earlier, this book has a practical focus. That means it encourages you not just to

read, but to do things. In each chapter, we’ll be working in software, using the features of Unity and

MonoDevelop, and other software, to create a working first-person shooter game. This book has

been designed and configured for you to follow along with me, repeating the steps I take, while

understanding them too, to build a first-person shooter in parallel. However, the book companion

files feature all the assets I’ve used and the projects I’ve made for you to use should you wish to

start at specific chapter or start from exactly the same place as me.

Each and every chapter features its own folder in the companion files, and features a start and end

project. The chapter begins with the start project and move toward the end project. Each chapter

features notes and comments directing you to the relevant companion files when appropriate; so

please be on the lookout for those as we progress. The Apress companion files for this book can be

found at www.apress.com/9781430267461.

www.itbookshub.com

www.apress.com/9781430267461
http://www.allitebooks.org

1

Chapter 1
Designing and Preparing

Welcome to Chapter 1, the beginning of a comprehensive and “professional” C# programming

course for the Unity engine. The core objective of this book is to thoroughly explore the development

of a first-person shooter (FPS) game from start to finish. Further, it aims to do so in a way that’ll

have strong practical relevance for you and your own projects. This book is intended to be read as

a complete course; meaning you should read it on a chapter-by-chapter basis, in sequence from

beginning to end, thinking of each chapter as an independent class or lesson. If you follow this

book carefully in order, sitting at the computer and working along with me in Unity, then by the end,

you should have completed a playable FPS game that runs on desktop platforms and has mobile

potential. But much more than this: you’ll have seen and explored many C# coding techniques that

have wider relevance and importance than only to the specific game created here. As we progress,

considering techniques and ideas, it’s important to see them in their broader context, as tools you

can use in your own ways and for your own games. Don’t just think of them as ideas limited to this

book and this project— because they’re not.

A further and final quality of this book, which makes it unique among the tutorial literature available

today, is its strong “professional” focus. The book title is Pro Unity Game Development with C#, and

the word Pro has an important meaning worth clarifying before getting started with development.

Pro (short for professional) and is especially vague in the games industry. This is because it means

different things to different people, and there’s little or no consensus about which definition is correct,

if any. To some, being a professional simply means your main income stems from making video

games. To others, you can also be a professional by making games part-time, or even as a hobby,

so long as you sell them for money. For others, being a professional is about having a recognized

degree or qualification from an established authority, like a university. And to others, professionalism

has nothing to do with money or education, and is about making games of a specific quality

and polish.

Now, it’s not my intention to promote any of these definitions as correct exclusively. I want to capture

at least something of them all in this book when I use the term professional. By “professional,” I mean

this book has a strong practical flavor and value, as opposed to a theoretical or academic flavor. Its

aim is not to introduce you to Unity or C# development as though you were a complete newcomer,

or to debate about the nuances or specifics of more advanced features. Rather, it assumes you’re

www.itbookshub.com

http://www.allitebooks.org

2 CHAPTER 1: Designing and Preparing

already familiar with the basics, and aims to show how you could use Unity and C# in a practical

context, making real-world games—the kind you could seriously think about selling if you wanted.

Consequently, reading this book should feel much like putting on a pair of magical glasses that allow

you to see new possibilities in familiar surroundings. Its main benefit should be in allowing you to see

new and creative ways to use the tools you already know.

Note It’s important to be flexible and open-minded about solutions and approaches in game development.

Just because the word professional is used in this book, don’t think the techniques and methods I’ll show

you here will always be the best or optimal methods for your own projects in every case. Games are highly

context sensitive. For any game there’ll likely be many roads to the same destination, and choosing the right

road often takes careful consideration. So be open to exploring and avoid rigidity. This book offers plenty of

food and ideas to help you formulate alternative plans and to see things from new perspectives.

Designing
This is Chapter 1, so we’ll be thinking here about how to get started making a C# Unity game. When

most people begin making a game, there’s typically a strong temptation, born from excitement and

enthusiasm perhaps, to immediately fire up Unity and MonoDevelop, and to “jump in” and get started

in a free-form style. The desire for instant, tangible results like this can be strong indeed. But resist

it. Jumping into coding without any prior planning is almost always a recipe for disaster and drift;

not to mention wasted time! If you want professional quality results, then invest time ahead simply to

think, consider, and plan, and also to write down the results of your thinking, whether that’s in words,

pictures, or diagram form—whatever best helps you remember your own thoughts.

Maybe you think you know your own thoughts well and don’t need to write them down. But resist

this way of thinking, too. Get into the habit of making written plans. Over time, we typically forget,

and our thoughts and ideas get fuzzy. But solid and dependable coding critically requires clarity of

mind, and that’s true no matter which programming language we use. Half the solution comes from

understanding the problem. The famous philosopher John Searle echoed this when he said, “If you

can’t say it clearly, you don’t understand it yourself.” So make written plans and work on the basis of

those. With that said, we’ll begin by writing a summary and overview of the game we’ll be making in

this book.

Game Overview
The FPS game we’ll make in this book will be titled Crazy Mad Office Dude (hereafter referred to as

CMOD), as shown in Figure 1-1. You can also visit my YouTube Channel at www.youtube.com/user/
alanthorngames to see the game in action. CMOD is an action-shooter in a deliberately comic and

cartoon style, played in first-person perspective (from the eyes of the game character).

www.itbookshub.com

http://www.youtube.com/user/alanthorngames
http://www.youtube.com/user/alanthorngames
http://www.allitebooks.org

3CHAPTER 1: Designing and Preparing

In this game, the Player must struggle against its tyrannical employer (the Corporation), which, being

incredibly evil, is holding back on paying the Player his due salary—many months’ worth of money.

So the Player, understandably enraged, must explore the Corporation’s office environment (the

Level), collecting Cash Power-Ups, which are scattered around. The aim is to reclaim the Player’s

salary in full, and maybe a bit more besides. The game is won and completed when the Player

successfully collects all Cash Power-Ups in the level. To prevent the Player from achieving his goal,

the Corporation has (of course!) dispatched evil minions (the Enemies) to attack and eliminate the

Player once and for all.

Successful attacks on the Player reduce the Player’s Health, and the Player is destroyed when

his Health is reduced below 0. The Player may deal with these slippery enemies using two main

strategies: he may cowardly avoid the Enemies altogether, hoping to evade all or most of their

attacks. Or, he may resort to Carpe Diem, foolhardily attacking them in combat using up to two

different weapons: fists or a pistol. Just as enemy attacks on the Player reduces the Player’s health,

Player attacks on the Enemy will reduce the Enemy’s health—meaning that the Player and Enemies

may attack and destroy each other. Of course, it goes without saying, the Enemies are quite smart.

They don’t just stand around doing nothing all day, twiddling their thumbs and waiting for the Player

to appear. They patrol around the environment, intelligently hunting for the Player—making them

appear and behave just like rational and sentient beings.

Figure 1-1. The game to be created—Crazy Mad Office Dude

Note The game developed here will feature only one level. Yes, creating the mechanics of just one level will

fill the whole of this book! However, the game and concept could easily be expanded to include many more

levels, as we’ll see.

www.itbookshub.com

http://www.allitebooks.org

4 CHAPTER 1: Designing and Preparing

Game in Depth
We’ve now established a general overview of the game to be made, CMOD as whole. In writing and

thinking about that, we have, however, relied on a range of smaller and dependent concepts. These

are constituent ingredients of the game. These concepts include the Player, Enemies, Power-Ups,

Weapons, Health, the Level, and more. In this section, we’ll itemize and catalog these, offering an

informative description of each. As we progress through the book, each concept will require its own

specific implementation in C# and Unity.

	The Player. The Player in a first-person shooter usually has no substantial

graphical representation in the game world, except for his or her hand holding

a weapon at the bottom center of the screen. The Player is the character the

gamer controls and moves around during gameplay. It’s how the gamer interacts

with the world: such as destroying enemies, opening doors, pressing buttons,

and collecting power-ups. In addition, the Player also has a finite amount of

Health, a numerical property measuring his well-being. The higher this value, the

better for the Player. This value is reduced when Enemies successfully attack the

Player. When this value is 0 or below, the Player dies and is removed from the

game. Since CMOD will be a single-player game, as opposed to multiplayer, the

removal of the Player from the game constitutes Game Over (the end of play).

	The Enemies. CMOD features three main Enemy types or species, whose

shared aim is to kill the Player through attacks. These Enemies are as follows:

The 	 Drone (see Figure 1-2), a genetically engineered bureaucrat with a penchant for

long questionnaires and customer surveys. This Enemy is the weakest of the three.

He attacks at close range using his bare fists.

Figure 1-2. Enemy Type 1: Drone. Contains three main frame-sets of animation: Standing Still (Neutral), Running, and Attacking

Next is the 	 Tough Guy (see Figure 1-3), a professional hit man employed by the

Corporation to eliminate those troublesome types who expect payment for their work,

including the Player! A Tough Guy is the only Enemy to have a range attack: he’ll fire a

pistol whenever the player enters his line of sight.

www.itbookshub.com

http://www.allitebooks.org

5CHAPTER 1: Designing and Preparing

The final Enemy is 	 Mr. Big Cheese (see Figure 1-4), the boss of the Corporation.

Because he relies on protection from his Tough Guys, he doesn’t have a range attack;

but he’s no lightweight either. When he strikes with his fists, the Player will suffer

severe damage.

Figure 1-3. Enemy Type 2: Tough Guy. Contains three main frame-sets of animation: Standing Still (Neutral), Running,

and Attacking…

Figure 1-4. Enemy Type 3: Mr. Big Cheese Contains three main frame-sets of animation: Standing Still (Neutral), Running,

and Attacking…

All three enemies also have a Health property, which can be reduced when the 	
Player attacks them with a weapon. If an Enemy’s health is reduced to 0 or

below, it is destroyed and permanently removed from the game. In addition to

health, all three enemies exhibit intelligence. Having been alerted to the Player’s

intrusion into their Corporation headquarters, they’ll all be on patrol, searching

for him or her. If they find the Player, they’ll give chase until they enter attacking

distance. When they do, they’ll attack with all their mightiness.

	Power-Ups. Scattered liberally around the Level are special collectible objects,

called Power-Ups. These may be collected only by the Player (not by Enemies)

and they’re collected whenever the Player collides (or walks into them). Each

and every Power-Up instance may be collected once only (it’s destroyed on

collection), and it’ll have some immediate effect on the Player, depending on the

Power-Up type. CMOD will feature four Power-Up types:

A 	 Cash Power-Up (see Figure 1-5), which gives a specified amount of money

to the Player.

6 CHAPTER 1: Designing and Preparing

A 	 Weapon Power-Up (see Figure 1-6), which upgrades the Player’s default weapon

(Fists) to a range attack (Pistol).

Figure 1-5. Power-Up 1: Cash

Figure 1-6. Power-Up 2: Weapon Upgrade

Figure 1-7. Power-Up 3: Ammo Restore

An 	 Ammo Power-Up (see Figure 1-7), which restores the ammo for the pistol weapon,

if collected.

A 	 Health Power-Up (see Figure 1-8), which restores the Player’s health to full.

7CHAPTER 1: Designing and Preparing

	Weapons. If the Player chooses to attack an Enemy, it must be done so with

a Weapon. The Player can equip only one weapon at any one time, and there

are a total of two weapons in the game, each behaving slightly differently and

each dealing different amounts of Damage. At game-start, the Player begins

equipped with the default weapon of Fists (see Figure 1-9). This weapon is

permanently accessible and never runs out of ammunition because it’s not the

kind of weapon to require ammunition. This weapon, however, has the shortest

attack range and deals the least damage to Enemies. There is also the Pistol

weapon (see Figure 1-10), which offers ranged attack and deals more damage,

but must be collected in the Level through a Power-Up. This weapon has limited

ammo, which reduces each time the weapon is fired. The ammo can be restored

by collecting an Ammo Restore Power-Up. When the ammo expires, the weapon

becomes unusable. During game play, the Player will be able to cycle through all

collected weapons, choosing which one to use.

Figure 1-8. Power-Up 4: Health Restore

Figure 1-9. Weapon 1: Fists

Figure 1-10. Weapon 2: Pistol

8 CHAPTER 1: Designing and Preparing

	Level. The Level represents the complete game environment, plus everything

else inside it. The level architecture, such as the walls and floors, will be

composed into integrated wholes from separate and modular mesh pieces,

which I’ve modeled beforehand using the free 3D software Blender. Modular

means the environment was created in blocks, or modules, which match at the

seams. So each module fits together with others and may be recombined, like

Lego bricks, to form larger and more complete environments inside the Unity

Editor. More on this later. See Figure 1-11 for the game environment, as seen

inside the Unity Editor.

Figure 1-11. Game environment for CMOD. Notice the modular mesh pieces inside the meshes folder of the Project panel. These

are included in the associated project files (FBX Format), inside the AssetsToImport/Meshes folder

Note Level design and modular techniques are considered briefly in the next chapter for the sake of

completeness. However, the primary focus of this book is on using C# in Unity to code and customize game

behavior specifically. Consequently, modular design and level building will not receive extensive coverage. But

don’t worry: this book provides a Unity project, already configured with a level assembled from meshes, from

which we’ll begin work together by adding C# code.

9CHAPTER 1: Designing and Preparing

	GUI. In addition to all the core or game-critical objects discussed already,

such as the Player and Enemies, CMOD will also feature a GUI (graphical user

interface). This refers to all the 2D graphics or widgets overlaid on the screen to

provide the user with access to game options or information. These elements

are divided over two main parts or areas: the HUD (Heads-Up Display) and the

main menu. The HUD (as shown in Figure 1-1) refers to all the small displays

overlaid onto the screen while the game is being played (such as a cash

counter and health information), to keep the player updated in real time on

vital game statistics. In contrast, the main menu (as shown in Figure 1-12) is a

separate screen or window that is shown to allow the Player access to

game-wide features, such as restarting the game, exiting the game, and also

loading and saving the game. While the main menu is visible onscreen, all other

game events, such as the movement of Enemies and the actions of the Player,

should be paused and frozen.

Figure 1-12. The Game menu allows access to game-wide features, such as Restart Game, Exit Game, Load Game, and Save

Game. Later chapters in this book will implement all these features

10 CHAPTER 1: Designing and Preparing

Developing the Design: Looking Ahead
The previous sections, taken together in combination with the YouTube gameplay video (URL

provided earlier), should offer a strong enough and clear enough vision of CMOD. These resources

will constitute our game design document (GDD), a document clearly articulating the vision of the

game to make. For most games, the GDD will typically be longer and more comprehensive than

ours, but our GDD is sufficient and fit for purpose in our case. The design may initially seem “simple”

(or maybe not!), but if it seems so to you, it’s important not to confuse simple with simplicity. The

game we’ve planned actually involves a lot of work, especially C# coding work. Each subsequent

chapter is dedicated to a specific aspect or subset of development. In this section, we’ll take a

sneak glimpse of that future work: a general guided tour through some of the main issues and

subjects we’ll visit throughout this book. This work ranges from using the Unity Editor and tools,

sometimes in new and creative ways, to heavy coding sessions in C# to create artificial intelligence

and pathfinding. Let’s see how these subjects, and our workload in general, are distributed across

the book on a chapter-by-chapter roadmap.

	Chapter 2 is concerned with establishing the foundations of our game.

Game development is a specialization of software engineering, and like most

engineering projects, it must begin by laying foundations. This involves lots of

work in the Unity Editor—especially level design work—using both the scene

and game views for assembling and building a level with modular environment

pieces. It’ll also involve lighting and lightmapping with the Beast lightmapper

to get an appropriate mood and look for our environment. In addition, we’ll

also look at processes for automating asset importing to fix some mesh import

issues we’ll encounter. By the end of Chapter 2, we’ll end up with a project that’s

ready to start customizing and defining through C# scripting.

	Chapter 3 starts our coding adventure! It’s where we add code to our project.

It’ll explore event-driven programming in depth, looking at what it is, how it

works, and how to integrate it into our project to get efficient results. It’ll also

explore why we should start implementing this kind of system before anything

else. Practically, every game needs to detect when things happen, such as when

the Player dies or collects a power-up, among others (these will all be important

events for us). In addition, other objects in the game need to know when those

events occur, so they can respond in specific ways. The Enemies, for example,

need to know when they’re close enough to the player to launch an attack;

otherwise, they’ll never know when to start attacking. These issues concerning

events and responses will lead us to develop a streamlined and dedicated

Notifications class; one capable of handling almost every kind of event and

response we could ever want in a game.

	Chapter 4 will see us using concepts such as class inheritance, Singletons,

and vector arithmetic for creating our four workable power-ups for the game:

the Cash Power-Up, the Upgrade Weapon Power-Up, the Ammo Power-Up and

the Health Restore Power-Up. Achieving this requires us to consider a range

of ideas. We’ll use the Unity API to work with Physics Colliders, components,

and 2D sprites (part of the 2D functionality added in Unity 4.3). We’ll also

develop a range of different and interacting classes, and build our own Billboard

functionality to ensure sprites are always camera aligned. By the end of this

11CHAPTER 1: Designing and Preparing

chapter we’ll have a clean, empty environment filled with solid and working

power-ups we can collect.

	Chapter 5 is about refining the Player character and the Player input to work

consistently across multiple platforms, from desktop systems to mobile devices.

Here we’ll develop a customized First Person Controller based on the default

Unity Controller, which works on Windows, Mac, Linux, Android, iOS, and

Windows Phone. We’ll also examine mathematical ideas, such as sine waves

and curves to program a customizable head-bob effect to the first-person

camera. That is, to simulate the natural effect of head movement, we’ll make the

camera bob up and down seamlessly as the Player moves around in the world.

And we’ll also work with Mecanim to create a death animation in which the

camera falls to the ground.

	Chapter 6 is where we give the player some fire power. Specifically, we’ll code

the ability to attack and inflict damage with Weapons, both the fists and pistol

weapons. In this chapter, we’ll look deeper at class inheritance and at concepts

like virtual functions and polymorphism. In addition, we’ll also see how to create

animated sprites for creating weapon animations (such as gun fire) using timing

functions and coroutines.

	Chapter 7 throws our three evil enemies into the mix—namely Drones, Tough

Guys, and Mr. Big Cheese. Building these guys will lead us into a veritable

coding extravaganza. With these, we’ll code enemies that can take and inflict

damage, and behave with artificial intelligence that integrates well with the Unity

Pathfinding and Navigation system. Here, we’ll explore concepts such as Finite

State Machines (FSMs), so enemies can make informed decisions and change

their behavior, as well as how to program with NavMeshes and NavMesh Agents,

allowing enemies to find their way intelligently about the level, while avoiding

physical obstacles along the way.

	Chapter 8 delivers us into the troublesome world of GUIs (graphical user

interfaces), where we’ll see the limitations of the Unity GUI system and the

benefits of coding our own. Further, we’ll consider concepts such as resolution

and aspect ratio, as well as anchoring and hierarchies, to code fixed-sized

interfaces that look good and act predictably at various screen sizes.

	Chapter 9 explains how to code a load-and-save game system, allowing the

user to save his or her gaming session to persistent storage, from where it can

be restored without data loss at any later time. This chapter will explore XML

files, the .NET Framework classes, and data serialization.

	Chapter 10 completes our work, leaving us with a 100%-working FPS game.

There will no doubt be room for improvement, of course. But in this chapter,

we’ll recap over all the concepts we’ve seen throughout the book, thinking about

how we might apply them in other contexts and to other projects. In addition,

this chapter will crystalize or condense many of those concepts into bite-size

and easy-to-remember chunks, which will make the chapter especially useful

as both a pseudo-appendix for this book, as well as a more general coding

reference.

12 CHAPTER 1: Designing and Preparing

Game Development Workflows
Before jumping in and getting started with CMOD (reserved for the next chapter), I want to spend the rest

of this chapter sharing with you some Unity tips, tricks, and techniques that I frequently find helpful when

developing my own games. Making a game can be an intensive and heavy process, so it’s important

to develop a general workflow that you feel comfortable following. The advice presented here is not

essential in the sense that you need to follow it to work along with this book. But rather, it’s presented

as a set of recommendations and suggestions that you may like to integrate into your own workflow,

wherever you think it can be improved. Feel free to use it or ignore it until you find a workflow you like.

Tip #1: Interface Layout
The layout and arrangement of the Unity interface is critically important to the smoothness and speed

of your working. So much so that even the slightest interface change, perhaps in the alignment of a

panel or a dockable window, can have dramatic repercussions for your efficiency and speed in the long

term. Consequently, when working in Unity, it’s important to find a layout that supports your workflow

and needs from the very beginning to avoid unnecessary setbacks and frustration. Typically, the “ideal”

interface layout for you will not be general but will vary depending on the project you’re developing.

For games using little or no animation, it’s likely you’ll never need the animation editor or the Mecanim

tools—and so you can hide those windows. Similarly, for games that never use Pathfinding or

Navigation, you’ll never need to see the NavMesh tools. For CMOD, however, we’ll need all those

things and more—but not necessarily throughout the whole of development. Figure 1-13 shows the

layout I’m using for this project, which is based on the Default layout.

Figure 1-13. Unity interface layout configured for developing CMOD

13CHAPTER 1: Designing and Preparing

Note To create the CMOD interface layout, I began by selecting the Default layout to restore the UI

defaults. To do that, select Layout ➤ Default from the top-right menu in the Unity Editor. Afterward,

additional windows can be opened and docked into the interface as required, using the Window menu. For

the CMOD layout specifically, open the following windows: Window ➤ Animation, Window ➤฀Animator,

Window ➤ Sprite Editor, Window ➤ Lightmapping, and Window ➤ Navigation. To save the completed

layout for easy reference, select Layout ➤ Save Layout… from the Layout drop-down (see Figure 1-14).

Figure 1-14. Saving a custom interface layout

The CMOD interface layout in Figure 1-13 consists of three notable panels or tabbed areas marked

by the letters A, B, and C, with the exception of the left-aligned Hierarchy panel. The arrangement

of these three areas is based on the principle of view-exclusivity. That is, the panels in A, B and C

have been divided this way because of how we view and work with them. Area A features larger

editors, such as the Scene, Game, Animator (Mecanim), and Sprite Editor windows. The reason for

their tabular arrangement here is largely because these editors work in combination with the Object

Inspector, as well as the Project panel and Hierarchy panels—and other editors in Groups B and C.

We’ll often want to open Group A editors side by side with the Object Inspector. So we don’t want

them tabbed with it. The same rationale applies to other editors in group B too. We’ll often view

these in combination with editors in Group A and C, but hardly ever with others in group B. Then

finally there’s Group C. These editors work much like those in B, because we’ll often view them in

combination with Group A. But unlike Group B editors, they are read and understood more intuitively

when read horizontally (left-and-right) as opposed to vertically (up-and-down), such as the animation

timeline window, or the Project panel.

14 CHAPTER 1: Designing and Preparing

Tip #2: Dual-Monitors
A Dual-Monitor (or Multi-Monitor) configuration is one where two or more displays are connected to

the same PC or Mac, and together they show a wider desktop, which reaches across all monitors.

This means you get to arrange your windows and panels conveniently over an even wider screen area

than usual. If you’re fortunate enough to be using such a setup already, then you can make especially

good use of it in Unity. And if you don’t have this setup but your budget allows it, I highly recommend

investing in it. In Unity, Dual-Monitors are particularly useful in two contexts: scene editing (as shown

in Figure 1-15) and scripting (as shown in Figure 1-16). To jump between these two configurations, it’s

sensible to create two separate UI layouts: (DM-Editing) and (DM-Coding) – DM = Dual Monitor.

Figure 1-16. DM-Coding layout keeps a single monitor layout (in left monitor) for scene editing and inspector tools, and

MonoDevelop for coding (in right monitor)

Figure 1-15. DM-Editing Layout separates scene editing tools (in left monitor) and property inspection tools and editors

(in right monitor)

	DM-Editing. This mode is tailored to scene building, property tweaking, and all

other editor functionality that doesn’t involve heavy coding. The greatest benefit

of this layout is the large screen space dedicated to the Scene and Game

viewports in the left monitor, giving us an unencumbered and easy view of our

scene for level designing, testing, and debugging. By separating the scene and

game views in the left monitor from the editors in the right, we achieve a useful

kind of “decluttering” and spatial organization. This kind of functional separation

www.itbookshub.com

http://www.allitebooks.org

15CHAPTER 1: Designing and Preparing

between panels can be conducive to heightened focus and concentration, and

its ability to enhance our workflow shouldn’t be underestimated.

	DM-Coding. This layout again achieves a functional separation between UI

panels, as with the DM-Editing layout. But this time, the separation is between

the Unity Editor Interface proper (in the left monitor) and the MonoDevelop IDE

(in the right monitor)—or vice versa depending on your preference. With this

layout, the left monitor is identical to the single-monitor layout for the Unity

Editor (as shown in Figure 1-14), but here we also get separate and full-screen

access to a coding window in the right-hand monitor. This makes debugging,

visualization, and code reading somewhat easier because we get to read our

code alongside Unity, especially when our game is running in Play mode.

Tip #3: Be Organized
Game development in Unity (and more widely) involves working with lots of related resources,

including assets (such as meshes and textures) and code (such as C# source files). By “lots” of

resources, I mean hundreds and thousands, and sometimes even more! For the sake of simplicity

and sanity, therefore, it’s important to be organized from the outset and to remain so throughout

development. It’s important to make organization a habit. However, saying that is one thing and

achieving it is another. So to stay organized while project managing and coding, keep the following

principles in mind:

	Name and group assets. Every Unity project relies on assets. These include

meshes, textures, audio files, animations, materials, scripts, scenes, and

more. From the very beginning of your project, think seriously about how you’ll

organize and arrange these assets in terms of file names and the folders in

which you’ll put them. Don’t just import assets of every kind into your project

and then just leave them sitting together in the same folder. Doing that will

lead to confusion in the long term. You’ll grow weary of even looking at the

Project panel. Instead, you’ll need to group like items together, such as meshes

inside a Meshes folder, and textures inside a Textures folder (see the Project

panel in Figure 1-17 for asset organization in CMOD). For larger projects, you

may even need to take organization further by creating nested folders (folders

within folders), such as Meshes/Enemies and Meshes/Props. In addition, keep

a constant watch on your assets over your project’s lifetime to protect against

“stragglers.” Namely, assets that somehow wind up in the wrong folders, either

by accident or because you put them somewhere temporarily and then forgot to

put them back where they should be (it can easily happen!).

16 CHAPTER 1: Designing and Preparing

	Use meaningful object names. Organization applies not just to assets in the

Project panel, but to GameObjects in the scene, too. When building scenes with

lots of objects, take a quick pause and scan through the Hierarchy panel and

look at the names of your objects. Ask yourself: Are these names meaningful?

One way to reach practical judgments about this is to see if you can guess

what the object is, what it does, and where it is in the scene, purely from the

object name alone, without looking in the Scene tab or Game tab at all. If you

encounter names, such as Cube01 or Obj1, and cannot reasonably determine

what the objects do, then consider renaming your objects. If a cube mesh

is supposed to be an ammo crate, for example, then think about changing

its name from Cube01 to meshAmmoCrate_01. Now, applying this kind of

organization rigorously across your objects probably doesn’t sound like much

fun, especially if your scene has many objects. But it can ultimately save you

hours of time when selecting objects.

Figure 1-17. Asset organization in the Project panel for the CMOD project. Make asset organization a habit and development

will become a lot simpler

Note Remember that assets are data files and resources used in a project, such as meshes and textures

and audio files. GameObjects are specific instances of things, or entities, inside a scene—such as enemies,

characters, weapons, and vehicles. GameObjects live in the game world. Prefabs are collections of game

objects configured together into a standalone template, which is reusable as though they were one

complete entity.

	Use asset tags, object tags, and layers. Don’t think organization should stop

at asset file names or folders, or GameObject names. Take it a step further and

use asset labeling, object tags, and layers.

17CHAPTER 1: Designing and Preparing

	Asset labeling lets you index assets in the Project panel by associating meaningful

labels or “tags” with them, making it easier to search and find the assets you need

according to their type and relevance for your project. For example, consider labeling

environment meshes under Architecture, and character meshes under Character,

and so on. Labeling an asset (or more than one) is simple. Select all assets to label in

the Project panel, and from the preview pane (in the Object Inspector) click the blue

Label button in the bottom-right corner (see Figure 1-18). Click a tag from the menu

to apply an existing one, or else use the Edit Box to type in a completely new tag for

the selected assets. Once labeled, your assets are then completely searchable from

the Project panel, using the Search field (as shown in Figure 1-19). To search by Label,

click the Label toolbar button and select the Labels to Search For. On selection, the

Project panel is immediately filtered to show only matching results.

Figure 1-18. Labeling assets makes it easier to search find the assets you need

18 CHAPTER 1: Designing and Preparing

Note Labeling an asset does not affect its file name or the physical folder inside which it’s stored in the

Project. These remain unchanged regardless of labeling. Labels are Unity-specific metadata attached to the

file for your convenience when searching through assets.

	GameObject tagging. In many respects, Tags are to GameObjects what Labels

are to Assets. Tags are special identifiers that you may attach to objects in

your scenes, to group them and search them, and to perform other kinds of

operations to them directly in code. Unlike Labels however, only one tag may be

assigned to an object—that is, an object can’t have more than one tag assigned,

although many objects can share the same tag. Tags will be used extensively in

this book—and we’ll see them at work in some form in almost every subsequent

chapter. To create a new tag and assign it to an object, select any object in

the scene and click the Tag drop-down list at the top-left corner of the Object

Inspector. From the menu that appears, select Add Tag (see Figure 1-20). Doing

this displays the Tag Editor, where you can create new and custom tags—as

many as you need. Use the Size field to enter the number of tags to create, and

then name each tag using the Element fields below (see Figure 1-21). Once

created, the tags are added to the Tag list (see Figure 1-20). To assign a tag to

one or more objects, select all relevant objects and choose their tag from the

Tag list in the Object Inspector.

Figure 1-19. Searching for Assets by Label using the Project panel Search field

19CHAPTER 1: Designing and Preparing

Figure 1-21. Naming new Tags

Figure 1-20. Adding new tags from the Tag menu

20 CHAPTER 1: Designing and Preparing

	Use concise code comments. The final organization tip to mention concerns

code comments: that is, human readable statements that accompany source

code and clarify what the code actually does. In C#, code comments are written

with the // or /* */ syntax. You can also use a XML commenting style with

MonoDevelop (more information is at http://unitypatterns.com/xml-comments/).

My advice is: use code comments. They make life much easier—when written

concisely! It’s common to hear criticism of code commenting, for various

reasons. The following lists two of them, and I provide a reasoned response to

illustrate the importance of commenting.

	Criticism 1: I don’t need to write code comments because I know what I’m

doing. I know what this code does. And besides, nobody else is probably

ever going to read my code anyway.

	Response: The core assumption here is that code comments are exclusively

for the benefit of other people. But this is not true. Code comments can help

you write down and clarify your own ideas. They can help you remember

what your own code is doing when you return to it weeks or months later.

You may know what your own code is doing right now, but it’ll not be so

fresh in your mind after weeks and months pass without having seen it. So

use code comments as an aid to memory.

	Layers. Layers are functionally similar to tags in that they mark or group

GameObjects together by a specific criterion. Tags, however, are typically used to

select or identify objects in script, as we’ll see later. In contrast, layers are typically

(though not always) used in conjunction with cameras. By assigning a

group of GameObjects onto a layer, you can tell a camera to selectively render

or ignore a layer, and thereby all objects on that layer; so layers are especially

convenient if you have objects that must be shown or hidden together—like GUI

menus and HUD elements. Layers are further considered in Chapter 8.

Note If you’re hungry for more information on Layers right now, you can check out the Unity Layer

documentation at http://docs.unity3d.com/Documentation/Components/Layers.html.

Note As we’ll see later, you can access an Object’s tag through the Unity API with the GameObject.tag

property. You can also compare a tag with a String value using the GameObject.CompareTag function.

See http://docs.unity3d.com/Documentation/ScriptReference/GameObject-tag.html and

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.CompareTag.html.

http://unitypatterns.com/xml-comments/
http://docs.unity3d.com/Documentation/Components/Layers.html
http://docs.unity3d.com/Documentation/
http://docs.unity3d.com/

21CHAPTER 1: Designing and Preparing

	Criticism 2: Code comments are pointless. I don’t want to read a novel.

They just get in the way and make things even more confusing. Far from

being helpful, they can steer us in the wrong direction. Good code speaks

for itself and doesn’t need commenting!

	Response: There’s something true in this: code comments should be

helpful. But, if they’re poorly written and needlessly lengthy, they do stand to

be more of an obstacle than a help. However, this danger needn’t prevent us

from using code comments altogether. It just reminds us to be careful and

concise in our commenting, keeping them relevant and informative. So keep

comments as short as possible and stick to the point.

Note Code commenting need not be restricted to just standard, official comments.

Commenting can be extended into your very coding style. By using meaningful function,

variable, and class names, you can make your code a lot clearer and easier to work with.

Tip #4: Show Project Wizard on Start-up
At start-up, Unity will, by default, always open the most recently used project if there’s one to

open; otherwise, it’ll display the Project Wizard to create a new project. Its decision to open the

most recent project first is usually a convenient feature that you’ll leave unchanged. But there are

times when this behavior can be problematic. If you’re working in a team and are using Unity in a

networked environment, it’s likely you’ve opened a project from a shared network drive. In itself,

doing that will not generally cause any major issues. However, Unity expects to open projects

on an exclusive basis—meaning that only one instance of the project may be open at a time.

Consequently, if you restart Unity and it seeks to reopen the shared project but finds it’s already

open by another user on the network, it’ll cancel the open operation altogether and will exit instead

of showing the Project Wizard. The result is that you’ll be permanently locked out of Unity until the

other user on the network finally decides to close the project, allowing you exclusive access again.

Now, typically opening projects over networked drives is not something I’d recommend doing if

it can be easily avoided. But even so, there’s a way around this specific problem: specifically, by

forcing Unity to always show the Project Wizard on start-up, as opposed to opening the most recent

project. To achieve this, simply choose Edit ➤ Preferences from the Editor main menu. Then from

the General tab, enable the feature Always Show Project Wizard (see Figure 1-22).

22 CHAPTER 1: Designing and Preparing

Note Using Unity to access projects and assets across networked drives is not recommended. Many

developers have experienced slow-downs and crashes in such circumstances.

Figure 1-22. Force Unity to display the Project Wizard on start-up

Tip #5: Use FBX Meshes
Unity officially accepts meshes in an extensive variety of file formats, including Blend, MA, MB, MAX,

OBJ and FBX, and others. These formats can be produced by a range of 3D applications, such as Maya,

3DS Max, Lightwave, Blender, Strata, Cinema4D, and more. Among all these file formats, however, two

main types may be identified: Proprietary and Exported. Proprietary files are those saved directly from

3D modeling software, using the common File ➤ Save command. Exported formats are those saved

using commands such as File ➤ Export. The ultimate purpose of both methods is to serialize or output

meshes to a persistent file, which can be opened and read by many applications. However, despite the

common aim, there are significant differences between the Proprietary and Exported files, which have

implications when working with Unity. The upshot is generally this: Always use meshes from exported

formats—specifically FBX (see Figure 1-23). Why should this advice be followed?

23CHAPTER 1: Designing and Preparing

	Proprietary meshes produce dependencies. To import a Proprietary mesh

into Unity (such as MA, MB, MAX, or Blend), you’ll need to have the appropriate

3D software installed on your computer at the time of import. For MA and

MB files, you’ll need Maya installed; for MAX files, you’ll need 3DS Max; and

for Blend, you’ll need Blender—and so on for other proprietary files. This is

because the Unity Mesh Importer exports the Proprietary file to an FBX file

behind the scenes. That is, during import, it loads the associated 3D modeling

software, uses its internal FBX Exporter, and then accepts the outputted FBX

version. Thus for Unity, Proprietary meshes create a dependency on their

modeling software; Unity needs that software to import the mesh successfully.

If the software isn’t present during import, then the import will necessarily

fail—although once imported, the software is not required (unless you need to

import again!). Of course, this might not be a problem for you at all if you’re

sure that you’ll be the only one using your meshes and you’ll have access

to your 3D software for as long as you need. But if you’re sharing meshes

between team members who may not have the same software, or if you’re

not sure you’ll always be working at a computer with your modeling software

installed, then proprietary formats will prove problematic.

Figure 1-23. Manually exporting an FBX file from 3D modeling software (Blender). Blender is a free 3D modeling application that

can be downloaded from www.blender.org/

http://www.blender.org/

24 CHAPTER 1: Designing and Preparing

	Proprietary meshes create clutter. As mentioned, when importing a Proprietary

mesh, Unity calls upon the mesh’s associated software and uses its FBX

Exporter to create an exported version. In doing this, however, Unity asks you no

questions and provides no options. It simply creates an FBX version with default

settings applied. In contrast, if you export a mesh manually to FBX using the

tools in your 3D software, then you’ll get finer control and options over exactly

how the FBX is exported and the kinds of meshes and objects in your scene that

should be included in the file. The result is that manually exported FBX files are

typically cleaner and more efficient, because they feature only the data you truly

need. In contrast, the Unity-generated FBX files from proprietary files generally

include plenty of data that you never wanted exported anyway, such as lights,

dummy objects, meshes and faces you forgot to delete, and so on.

	Proprietary meshes are unstable. The term unstable is used here in a narrow

but important sense. By “unstable” I mean that importing a proprietary file into

Unity can lead to different results at different times, when different versions

of the 3D modeling software are installed. This is due to possible changes or

updates made to the FBX Exporter. In short, importing a Proprietary mesh with

one version of the 3D software installed will not necessarily produce the same

results when a different version is installed.

Note More information on Proprietary vs. Exported meshes for Unity can be found online at

http://docs.unity3d.com/Documentation/Manual/3D-formats.html.

Tip #6: Disable Ambient Lighting
If you build a scene with some meshes but without any lighting, and then play-test it, you’ll see

that your scene doesn’t appear completely black as you’d expect it to. In other words, your scene

is not in total darkness—even though there are no lights! This base or default illumination is known

as Ambient Light. It represents a non-shadow-casting light that is projected outward from the

scene origin in all directions infinitely, and it affects every mesh surface with equal intensity. That

is completely at odds with how “real world” lighting works, and so Ambient Light rarely produces

believable results. But it’s especially useful for lighting a scene during development and early

play-testing. It lets you see “what’s going on” before you’ve added any lights at all. But often

(after creating your own lighting), you’ll want to disable Ambient Light entirely.

To do disable Ambient Light, select Edit ➤ Render Settings from the Editor main menu to show the

scene render settings in the Object Inspector. From the Inspector, use the Ambient Color swatch to

specify Black RGB (0, 0, 0)—meaning no intensity (see Figure 1-24).

www.itbookshub.com

http://docs.unity3d.com/Documentation/Manual/3D-formats.html
http://www.allitebooks.org

25CHAPTER 1: Designing and Preparing

Tip #7: Use Root GameObjects
Every Unity scene is ultimately composed from a hierarchy of GameObjects. GameObjects exist

within the scene in relation to each other, and this relationship (as defined by the hierarchy) is

critically important to every object’s transformation (position, rotation and scale). Specifically, child

objects inherit the transformations of their parents. That is, the child adds its own transform to

its parent’s. This feature is useful for making objects move and interact together believably. This

hierarchical relationship can be put to good use in many ways and not just at runtime; it can help at

design time, too.

If you create an empty game object in your scene by choosing GameObject ➤ Create Empty from

the Editor menu, and then make it the ultimate parent of all objects, you’ll immediately have the

ability to transform your entire scene, should you ever need to reposition everything in one step while

building a level, or even at runtime (see Figure 1-25).

Figure 1-24. Disabling Ambient Light from the Render Settings menu

26 CHAPTER 1: Designing and Preparing

Tip #8: Incremental Backups
Making games takes time (sometimes a long time), and time is said to be a wasting resource

because once it’s spent and gone, there is no refund. You simply can’t get back time that’s passed.

So put a value on your time, give it respect, and invest it wisely when developing. One way you

respect your time and effort is by making regular backups of your data to prevent repeating work in

the event of data loss. This is to protect you against unforeseen events, such as computer failures,

data corruption, virus attacks, and other accidents. For Unity projects, making a backup is really as

simple as making a copy of your project folder, and then archiving it onto a separate storage device,

such as an external hard drive or cloud-based storage, or both. Don’t make a backup on the same

storage as the original, and keep the backup in a different physical location. For example, if the

original files are at your office, then keep the backup at home. Be sure also to name your backups

appropriately—use a numbering or date-based system—so that it’s easy to quickly identify not just

the latest backup, but also to understand the ordering of backups from the earliest to the latest.

Note More information on BroadcastMessage can be found at the Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Component.BroadcastMessage.html.

Figure 1-25. Creating Root GameObjects to control the scene hierarchy

In addition, as we’ll see later, you can call GameObject.BroadcastMessage on the Root object to send

an event or notification to every object in the scene, just by one line of code.

http://docs.unity3d.com/Documentation/ScriptReference/Component.BroadcastMessage.html

27CHAPTER 1: Designing and Preparing

Note One way to keep archives—and especially backups of source code—is to use version control

systems. The Unity Team license includes a range of options, including Perforce, Plastic SCM, and the Asset

Server. Other options include GIT, CVS, Mercurial, LibreSource, and others.

One question that commonly arises is “How often should I make backups?” The answer depends

primarily on you and your circumstances. At the end of each work day or work session, ask yourself:

“If I lost all my data now, and I had to resort to an earlier backup, how terrible and annoying would that be

for me right now? How much work and time would I have to reinvest simply to catch up to where I was?”

Think about these questions and be honest with yourself. If thinking about this makes you uncomfortable,

and if the idea of losing your data is especially unpleasant, then it’s time to make a backup.

Note The practice of making regular backups might seem to you so obviously important that it hardly

requires mentioning at all. It surely goes without saying. If this is how you feel, then splendid! You don’t

need me to convince you to make backups. However, despite the lip service often given to the importance of

backups, I often find people never making them and then later regretting that decision. So the importance of

making regular backups cannot be overstated.

Tip #9: Batch Renaming
Sometimes you’ll be working with lots of similar game objects in a Unity scene, such as a batch of

enemies, or ammo crates, or power-ups, or trees, or rocks, and others. You’ll typically want each

object in the batch to have a similar but distinct name from all the others, such as Tree_01, and

Tree_02, and Tree_03, and so forth. Now, it can tedious and time-consuming to name each of these

objects individually. Unfortunately, Unity (at the time of writing) has no out-of-the-box functionality

to automate this process. So often it’s convenient to customize the Unity Editor and create our own

Batch Renaming functionality. In this section, therefore, I want to introduce you to a custom-made

Batch Rename tool, which is an editor extension that plugs into the Unity interface and offers simple

renaming functionality for multiple objects. The source code for this tool is listed in Listing 1-1 for

your viewing, and is also included in the Project Files (inside the Chapter01 folder).

Listing 1-1 BatchRename.cs

using UnityEngine;
using UnityEditor;
using System.Collections;

public class BatchRename : ScriptableWizard
{
 //Base name
 public string BaseName = "MyObject_";

28 CHAPTER 1: Designing and Preparing

 //Start Count
 public int StartNumber = 0;

 //Increment
 public int Increment = 1;

 [MenuItem("Edit/Batch Rename...")]
 static void CreateWizard()
 {
 ScriptableWizard.DisplayWizard("Batch Rename",typeof(BatchRename),"Rename");
 }

 //Called when the window first appears
 void OnEnable()
 {
 UpdateSelectionHelper();
 }

 //Function called when selection changes in scene
 void OnSelectionChange()
 {
 UpdateSelectionHelper();
 }

 //Update selection counter
 void UpdateSelectionHelper()
 {
 helpString = "";

 if (Selection.objects != null)
 helpString = "Number of objects selected: " + Selection.objects.Length;
 }

 //Rename
 void OnWizardCreate()
 {
 //If selection empty, then exit
 if (Selection.objects == null)
 return;

 //Current Increment
 int PostFix = StartNumber;

 //Cycle and rename
 foreach(Object O in Selection.objects)
 {
 O.name = BaseName + PostFix;
 PostFix += Increment;
 }
 }
}

29CHAPTER 1: Designing and Preparing

Note The specifics and details of this code are not explained here because it’s not critical to developing

CMOD. The Batch Rename tool is simply provided to help improve your general workflow. More details

on the implementation of this tool, and others, are covered in the Apress Book Learn Unity for 2D Game

Development, available at www.apress.com/9781430262299.

To install the Batch Rename tool into any project in Unity, first create a new folder named Editor

in the Project panel (if there’s not already a folder with this name). And then drag and drop the

BacthRename.cs source file from Windows Explorer or Mac Finder into the Editor folder in the

project. This imports the source file and stores inside the Editor folder (see Figure 1-26).

Figure 1-26. Importing the Batch Rename tool into the Editor folder

Note The Editor folder is a special folder in a Unity project. Source files inside this folder are recognized

by the Editor as being Editor Extensions—as defining behavior, customizing how the editor works.

Once BacthRename.cs has been copied to the Editor folder, it’s is ready to use! Let’s give it a test run

and rename some objects in the active scene. Create some empty objects using GameObject ➤

Create Empty (these are going to be renamed). Then select those objects in the Hierarchy panel.

Once selected, access the Batch Rename tool by selecting Edit ➤ Batch Rename from the Editor

menu (note that this option is only available if BacthRename.cs is inside the Editor folder). Clicking

this displays the Batch Rename tool, as shown in Figure 1-27.

http://www.apress.com/9781430262299

30 CHAPTER 1: Designing and Preparing

Enter a sample name into the BaseName field, which is the name that will be prefixed to any number,

such as Tree_01. Leave the Start Number at 0 to begin numbering from, and leave the Increment at

1 so that numbering for the next object is increased by 1, for example Tree_01, Tree_02, and so forth

(see Figure 1-28). Once specified, click the Rename button to complete the operation and rename

the objects. Congratulations! You now have a Batch Rename tool.

Figure 1-27. Accessing the Batch Rename tool

31CHAPTER 1: Designing and Preparing

Tip #10: Showing Empty Objects in the Editor
Empty objects are very useful, as we’ll see throughout later chapters. They serve a similar function

to Dummies (or Dummy objects) in 3D software. An Empty is simply a GameObject that has no

renderable components. There’s nothing about an Empty that allows it to be seen, and so the player

never knows that they’re there. That’s part of why they are useful. Their lack of visibility makes them

great for marking respawn points in the scene, or for acting as pivot points (a point around which

other objects revolve), or marking out regions in the level. However, despite their usefulness in-game,

Empty objects come with a drawback for the developer when working with them in the Scene Editor.

The problem is that Empty objects are only visible in the scene when they’re selected. When selected,

you can see the object’s Transform gizmo (as shown in Figure 1-29). That helps you to know where

the object is. But when deselected, you can’t see the object anymore—you can’t even select it again

with your mouse because there’s nothing visible to select. To reselect the Empty, you’ll need to click

its name in the Hierarchy panel. This can be a tedious workflow. But thankfully, there’s a solution. That

is, there’s a way to show an Empty game object in the viewport without also making it visible to the

gamer at runtime.

Figure 1-28. Completing the Rename operation

32 CHAPTER 1: Designing and Preparing

To show any Empty GameObject in the viewport (even when deselected), select the Empty, and from

the Object Inspector, click the Icon button in the top-left corner (it can be difficult to recognize it as a

clickable button). Once clicked, choose the icon to associate with the Empty (see Figure 1-30, where

I’ve selected a diamond icon). And that’s it! The Empty will now display as a diamond icon in the

viewport—making it possible to see and select at all times.

Figure 1-29. Empty objects are visible in the Scene viewport when selected, but not when deselected. A = selected (gizmo

visible); B = deselected (gizmo hidden)

Figure 1-30. Showing Empty GameObjects in the Scene viewport

33CHAPTER 1: Designing and Preparing

Tip #11: Use the Stats Panel
When play-testing and debugging your games inside the editor, be sure to make the Stats panel your

friend; it is also known as the Rendering Statistics window. It features lots of helpful information,

updated in real time while your game is playing. The Stats panel appears in the top-right corner of

the Game tab and offers an overview of how your game is performing in terms of frame rate and

resource usage, among others. It’s important to note that the Stats panel is system specific, meaning

that it can help you understand how well your game is performing on the current hardware you’re

using. For this reason, always be sure to test and benchmark game performance on your target

hardware; that is, on the minimum specification for which your game is intended. To show the Stats

panel, activate the Game tab and click the Stats button from the viewport toolbar (see Figure 1-31).

Figure 1-31. Accessing the Stats panel

There are many properties shown in this window. The following list details and explains some of

them, including FPS, Draw Calls, Saved by Batching, Tris, and VRAM Usage.

FPS (frames per second). This shows the number of frames that your game is actually rendering to

the screen each second. Generally, the higher and the more consistent this number, the better. There

is no ultimate right or wrong definitive answer as to what this number should be; it will vary over

time. The more important question is: Does your game look and perform as intended on your target

hardware? If the answer is No, then there’s a problem. And perhaps the Stats panel can help you

diagnose what it is. That being said, the FPS should not usually be less than 15 frames per second.

Below this rate, the human eye perceives stutter and lag, and that effect is exacerbated when the

FPS is not consistent—when it fluctuates radically up and down.

34 CHAPTER 1: Designing and Preparing

	Draw Calls. This refers to the total number of times per frame that the Unity

engine calls on the lower-level rendering functionality to display your scene to

the screen. The higher this value, the more complex and expensive your scene

is to render. For this reason, lower values are generally preferred. There are two

easy ways to reduce draw calls. One is to use batching (we’ll see this later) and

the other is to reduce the number of different materials that your objects are

using. Each unique material in your scene will cost an additional draw call. For

this reason, if you merge textures together into larger atlas textures, and also

share and reuse materials across multiple meshes, then you can significantly

reduce draw calls and improve performance.

	Saved by Batching. This indicates the number of batching operations Unity

managed to perform on your objects to reduce the number of draw calls.

Typically, each Saved by Batching operation saves us at least one additional

call. In most cases, the higher this value, the better.

	Tris. This is the total number of triangles being rendered in the current frame,

after culling and clipping have been applied. (Thus, it doesn’t refer to the total

number of triangles in the scene). Most contemporary graphics hardware on

desktop computers and consoles are adept at processing triangles quickly,

meaning high tri-counts can, in principle, be achieved. The same cannot always

be said of mobiles, however. Consequently, the lower this value, the better it’ll

be generally. Of course, don’t be too ruthless in reducing triangles. Reduce

only to a level that’s consistent with your artist vision, and target hardware.

If we always reduced triangle count to the minimum number possible, then every

game we’d make would just be one triangle!

	VRAM Usage. Again, the lower this is, the better for performance—keeping

within reasonable limits. It tells us how much video memory on the graphics

hardware is being used for processing and texture storage.

Note More information on the Stats panel can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/Manual/RenderingStatistics.html.

Tip #12: Testing Resolution and Aspect Ratio
If your game is intended for a specific resolution, such as 1920×1080 or 1024×768, or for a specific

aspect ratio, such as 16:9, then it’s useful to test your game in the Unity Editor at the appropriate

size. Achieving this is easier now than it ever has been. Switch to the Game tab, and then click the

Aspect drop-down box in the top-left corner. From here you can choose a range of preconfigured

resolutions and aspect ratios, or you can click the Plus icon at the bottom of the list to input your

own custom settings (see Figure 1-32).

www.itbookshub.com

http://docs.unity3d.com/Documentation/Manual/RenderingStatistics.html
http://www.allitebooks.org

35CHAPTER 1: Designing and Preparing

Figure 1-32. Testing the game’s resolution and aspect ratio

Conclusion
This chapter achieved three main purposes. First, it detailed in overview the FPS game to be created

throughout this book, Crazy Mad Office Dude (CMOD). Second, it outlined the structure this book will

take to achieve that game—specifically, it detailed how the implementation work will be distributed across

chapters. And finally, in preparation for that work, it listed a range of practical and relevant guidelines and

workflows for using Unity in real-world projects. In short, by now you should be able to do the following:

Understand the game to be created	
Understand the elements that compose the game, including enemies, weapons, 	
guns, power-ups, and more

Appreciate how the implementation work for the game will be structured	
Configure the Unity GUI for your comfort	
Understand organization principles when working with project assets—storing 	
assets in folders, using tagging, and naming game objects

Understand the reasons for using FBX meshes	
Read the Rendering Statistics window	
Be committed to making regular backups of work	
Use the Batch Rename tool	
Understand the benefits of Root GameObjects	
Configure the resolution and aspect ratio for in-editor testing	

37

Chapter 2
Getting Started

In this chapter, we’ll start developing the FPS game, Crazy Mad Office Dude (CMOD), from the very

beginning. This involves a wide breadth of steps; specifically, creating a new Unity project, importing

and configuring assets, building Prefabs and levels from modular environment pieces, building

lighting and lightmapping, and configuring a NavMesh for pathfinding. By the end of this chapter,

we’ll end up with a complete Unity project that’s entirely prepared and ready for C# scripting. This

project is also included in the book companion files, in case you want to skip this chapter and

concentrate just on C# coding, which begins in the next chapter. But I recommend working through

this chapter, too—because it features plenty of helpful tips and advice for Unity projects in general.

This chapter makes use of assets included in the book companion files, in Chapter2/AssetsToImport.

So let’s fire up Unity, get the project files ready, and get started!

Step 1: Create Folders
Once you’ve created a new and empty Unity project, start thinking about project organization. Make

organization a priority—it can save you time. Create your project folders first so you can quickly

arrange and categorize the assets you import right from the outset. For this project, the following

folders will be required: Animation, Audio, Editor, Materials, Meshes, Prefab, Scenes, Scripts, and

Textures (see Figure 2-1). Once created, be sure to save the autogenerated default scene (Level_01)

inside the Scenes folder of the project, and from that point forward, save your work regularly using

the keyboard shortcut Ctrl+S on Windows or Cmd+S on a Mac.

38 CHAPTER 2: Getting Started

Step 2: Importing Textures and Meshes
Importing meshes and textures is an interrelated process because meshes typically rely on textures.

Consequently, you can make importing run smoother and easier if you import textures before

meshes. By importing in this order, Unity detects which textures and materials to autoassign onto

your meshes at import time. This means your meshes will automatically show their texture in the

preview pane from the Object Inspector, and even on their thumbnails inside the Project panel.

However, importing in the reverse order causes meshes to appear a textureless gray, in both the

preview pane and Project panel, and usually this won’t change automatically, even after you’ve

imported the textures. So, working on this principle, import the texture first from the book project

files AssetsToImport/Textures/mainTexture.png into the Textures folder inside the Project panel.

For a single file like this, you can import using either the Assets ➤ Import New Asset menu option,

or by directly dragging and dropping the files from Explorer or Finder into the Unity Editor. The latter

method is preferable when importing multiple assets together. See Figure 2-2 to see the imported

texture we’ll be using.

Figure 2-1. Organizing project assets into folders

Note This project will also make use of Standard Asset Packages that ship with Unity. Specifically, Character

Controllers and Standard Assets (Mobile). These can be imported from the main menu by selecting Assets ➤

Import Package ➤ Character Controller and Assets ➤ Import Package ➤ Standard Assets (Mobile).

These packages include a First Person Controller asset that we’ll use later in the book.

39CHAPTER 2: Getting Started

The file mainTexture.png is an atlas texture sized at 4096×4096 pixels, the maximum texture size

supported by Unity. Atlas textures are essentially created by copying and pasting all your smaller

and independent textures together inside a larger one—the larger one being known as the atlas.

All meshes and objects inside the game will reference the appropriate texture areas inside the

atlas, as opposed to referencing separate files. Doing this allows us to share a single material

(or the fewest number of materials) across all objects, leading to improved rendering performance.

Remember from Chapter 1, which discussed the Rendering Statistics window, that each unique

material rendered to the display increases the draw calls.

Figure 2-2. mainTexture.png is an atlas texture that’ll be applied to all objects in CMOD

40 CHAPTER 2: Getting Started

Step 3: FBX Meshes and Scale Factor
Next, it’s time to import meshes, which are found in the book companion files at AssetsToImport/Meshes.

Before doing so, however, there’s an “issue” to discuss relating to FBX files in general. Specifically, Unity

applies a default mesh scale factor of 0.01 to every imported FBX file. To see that, import a single FBX file

and check out the Scale Factor in the Object Inspector, as shown in Figure 2-3. The result is that every

imported FBX, by default, will appear in your scene 100 times smaller than its original size.

Figure 2-3. FBX meshes are imported into Unity with a default scale factor of 0.01. This may not be what you want…

The scale factor of 0.01 may, in fact, turn out to be suitable for your imported mesh, depending on

how it was modeled. But if it is, then presumably it’s only by accident. Typically, you’ll want the scale

factor to be 1.0 and not 0.01. The value 1.0 means the mesh will appear at its original size, unless

it’s also being scaled in the scene. In any case, you can easily change the scale factor for a mesh

from the Object Inspector. But typing this in manually can be tedious. Instead, we can code an editor

extension to automate the process, forcing Unity to apply a scale factor of 1.0 to every imported

mesh. Let’s create this now, before importing our meshes.

41CHAPTER 2: Getting Started

To create an editor extension, you’ll need to follow a Unity-established convention. Create a new

C# source file inside the Editor folder of the project. It’s really important for the file to be stored here,

in the Editor folder (or a subfolder). Nowhere else is acceptable. Once created, name the file

FBX_Import.cs and paste the C# code listed in Listing 2-1 into the file using MonoDevelop or your

code editor of choice. Important lines are highlighted in bold.

Listing 2-1. FBX_Import.cs

using UnityEngine;
using UnityEditor;
using System;

//Sets FBX Mesh Scale Factor to 1
public class FBX_Import : AssetPostprocessor
{
 public const float importScale= 1.0f;

 void OnPreprocessModel()
 {
 ModelImporter importer = assetImporter as ModelImporter;
 importer.globalScale = importScale;
 }
}

Note Try to keep your meshes sized at nice, round numbers; keeping in mind that 1 Unity unit generally

corresponds to 1 meter. Due to floating-point inaccuracy that can result from arithmetical operations, avoid

having your meshes very small or very large.

Note In summary, the FBX_Import.InPreprocessModel method will be called once automatically

by the Unity Editor for each imported mesh. On each execution, the mesh scale factor (represented by the

globalScale property) will be set to 1.0.

After this code has been saved and compiled, it’s time to import all the FBX meshes into the Meshes

folder of the Project panel. Once imported, notice first that every mesh has a Scale Factor of 1

(due to the FBX_Import class), and second, note that all meshes have textured previews in the Object

Inspector and textured thumbnails in the Project panel, because we imported our texture beforehand

(see Figure 2-4).

42 CHAPTER 2: Getting Started

Step 4: Configuring Meshes
After importing meshes into the project, there’s usually further configuring to do. First, when

importing meshes, Unity autocreates a new material inside a Materials folder, which is further

nested inside the Meshes folder—or wherever the meshes were stored. This material is assigned

automatically onto all imported meshes. Although we want to keep the material itself, the folder

organization is not neatly compatible with our own system and folder structure. So let’s move

the material into our original Materials folder at the root of the project, and delete the empty

autogenerated Material folder inside the Meshes folder. This leads to a cleaner folder arrangement

(see Figure 2-5).

Figure 2-4. Imported meshes with Scale Factors of 1.0 and textured previews. Some meshes may appear rotated by 90 degrees

in the preview pane, but this is not a problem. They will appear at their correct orientation when added to the scene

43CHAPTER 2: Getting Started

Caution Items deleted from a Unity project are sent directly to the Recycle Bin on Windows, or the Trash

on Mac. So if you accidentally delete something from your project, you can easily restore it again. Unless you

empty the Recycle Bin or Trash!

Figure 2-5. Moving the autocreated material to the Materials folder

Secondly, imported meshes lack collision information by default. This means that Charatcer Controllers,

such as the Third and First Person Controllers, will simply walk through the meshes in the scene, rather

than collide with them, as you’ll often want them to do. There are several solutions for fixing this. One

way is to generate mesh colliders, and the other is to manually surround the meshes (when added to a

scene) with basic collision primitives, like box and sphere colliders, which can be added to any game

object from the main menu under Component ➤ Physics. For the first method, select all meshes in

the Project panel and then enable Generate Colliders from the Object Inspector, being sure to click

the Apply button afterward to confirm the setting change (see Figure 2-6). Doing this autogenerates

a mesh collider component (with appropriate collision data based on mesh geometry) and attaches it

to the mesh. This collision data typically produces accurate results, leading to high-quality collisions.

But for complex meshes (with lots of vertices) it can turn out computationally expensive, leading to

performance issues—especially on mobile devices. Consequently, the second method is often a

preferred alternative. But our game (with its low-poly meshes) may safely use the first method.

44 CHAPTER 2: Getting Started

Note For more information on approximating environment collision data using basic collision primitives,

I recommend viewing my 3DMotive three-part video course, “Creating Blender Modular Environments for the

Unity Engine,” at https://www.3dmotive.com.

Figure 2-6. Enabling Generate Colliders to add collision data to imported meshes

Tip In Unity 3.5 and above, you can generate colliders for all your meshes simultaneously—you don’t need

to generate them individually. Just select all meshes in the Project panel and click Generate Colliders from the

Object Inspector.

https://www.3dmotive.com/

45CHAPTER 2: Getting Started

Every mesh in Unity features lightmap UVs in some form, regardless of whether they’re really used

in-game. Like regular UVs, lightmapping UVs are a set of mapping coordinates for meshes. Standard

UVs define how regular textures, like Diffuse and Bump textures are projected onto the mesh surface

in three-dimension. In contrast, lightmap UVs help Unity and the Beast lightmapper understand how

to project baked lighting (such as indirect illumination) from lightmap textures onto the mesh surface.

If your mesh has only one UV channel (UV1), then Unity, by default, will use that channel also for

lightmapping UVs. There are occasions when this choice may not be troublesome: such as when a

mesh has no overlapping or tightly packed UVs.

But usually, it’s a good idea to avoid using UV1 for lightmap UVs. It’s usually better practice to leave

UV1 reserved for standard mapping, and have UV2 (a second and separate UV channel) for lightmap

UVs. To achieve this, however, a mesh needs a second UV channel, and there are two main options

available for creating this channel. One method is to create the channel manually in your 3D modeling

software—the steps for doing this are software specific. And the second method is to have Unity

generate a second lightmap UV channel. This latter approach is achieved by selecting all appropriate

meshes in the Project panel, and then by enabling the Generate Lightmap UVs check box from the

Object Inspector. For CMOD, lightmap UVs should be generated for all meshes (see Figure 2-7).

Figure 2-7. Unity can generate lightmap UVs for imported meshes with only one UV channel

www.itbookshub.com

http://www.allitebooks.org

46 CHAPTER 2: Getting Started

As seen in Figure 2-7, when the Generate Lightmap UVs check box is enabled, additional options

are revealed in the inspector, which influence the generation process. Typically, if your meshes are

hard-angled environment meshes—with sharper 90 degree turns and corners—then the default

settings will likely prove sufficient. If your meshes are organic, curved, spherical, and smooth,

then better lightmap UVs can usually be generated with higher values for the Hard Angle setting.

For CMOD, the default settings will be suitable.

Note More details on generating lightmap UVs can be found at the Unity online documentation at

http://docs.unity3d.com/Documentation/Manual/LightmappingUV.html.

Step 5: Planning and Configuring Textures
CMOD features only one texture, namely a 4096×4096 atlas. Its dimensions have been chosen

for two reasons. First, it’s a conventional power-2 size. Nearly every texture, except a GUI texture

or dedicated sprite, should be a power-2 size, for both performance and compatibility reasons.

However, the texture need not always be square. In short, a power-2 size means the texture’s width

and height (in pixels) may be any of the following sizes: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,

2048, and 4096. Second, 4096 has been chosen, as opposed to any other power-2 size, because it’s

the largest size supported by Unity and our target resolution is not clearly defined or known (I want

to support many screen sizes, resolutions and platforms).

By making textures to the largest size possible therefore we can always downsize, if required, through

all the possible sizes that Unity supports. This is always preferable to making textures smaller than

needed, because upsizing always incurs quality loss and blur, due to resampling. In general, make

textures exactly the size you need, and no smaller or larger. This is because all resizing involves

resampling. But if you’re not sure about the sizes required, or if you need different sizes, then always

create your textures at the largest size, since downsizing incurs less degradation than upsizing.

Note Through the Texture Properties dialog in the Object Inspector, Unity offers built-in features for resizing

textures “nondestructively.” That is, for resizing textures up or down, always based on the original. You can

simply select a texture in the Project panel and then pick a new size for it (see Figure 2-8). Of course, this

still involves implicit resampling and quality loss as described earlier, but the resized versions are always

generated from the original imported texture and not from any other resized versions we may have generated

previously. This means any quality loss incurred through resizing is not accumulative, even if you resize

multiple times in succession.

http://docs.unity3d.com/Documentation/Manual/LightmappingUV.html

47CHAPTER 2: Getting Started

When importing the CMOD atlas texture into Unity, several default properties are applied—and these

can be viewed using the Texture Properties dialog, as shown in Figure 2-8. Sometimes the default

settings will be just what you need, in which case no further tweaking is necessary. In our case,

however, the default settings are probably very different from what we need. How so? And what

should be changed? The following points answer our two questions.

Figure 2-8. Texture Properties are accessible through the Object Inspector when a texture asset is selected. Using these settings,

you can up- and down-size textures as required for your platform and build

48 CHAPTER 2: Getting Started

	Changing the Texture Type. By default, the CMOD atlas is imported with the default

Texture Type set at Texture (as shown in Figure 2-9). Texture refers to general textures

applied to most types of 3D meshes, including environment meshes and animated

meshes. In many cases, this setting will be acceptable. But for the CMOD atlas it

isn’t. CMOD is intended to be an FPS game in a comic/humor style. We’ll need the

atlas not just for environment meshes, but also for the interface and for sprites. As we’ll

see, both the enemies and power-ups will be implemented as old-school billboard

sprites. That is, as 2D images constantly aligned upright and facing the camera.

This means the atlas will be multipurpose. It’ll be used for meshes, for the GUI, and

for sprites (which are 2D GameObjects introduced in Unity 4.3). To configure the

texture for our specific needs, we’ll change the Texture Type setting from Texture to

Advanced. When Advanced is selected, additional properties appear in the Object

Inspector, allowing even further customization (see Figure 2-10).

	Maximum texture size. As mentioned, the CMOD atlas texture is sized at

4096×4096 pixels. By default, however, Unity imports this and resizes it to

1024×1024. This size might be suitable for legacy hardware and some mobile

builds. But for desktop PCs and Macs, the size should be 4096×4096. To

solve this, use the Max Size field in the Object Inspector to “upsize” the

texture back to its original size. “Upsize” here is not true upsizing: Unity is not

stretching a 1024×1024 texture to 4096×4096. Rather, it restores the original

texture without downsizing it. Notice the Per-Platform settings for textures,

as shown in Figure 2-9. Switching between these tabs means we can specify

different textures sizes on a per-build basis, allowing Unity at compile time to

automatically select and build the appropriate texture for our target platform.

Figure 2-9. Tweaking texture settings on a per-platform basis

49CHAPTER 2: Getting Started

	Specifying advanced settings. For our atlas to act as intended, we’ll

need to specify some advanced settings. The settings required are shown in

Figure 2-11. Go ahead and copy over those settings on your system. But I also

want to explain in brief why they’ve been chosen. First, Alpha is Transparency is

enabled. Transparency is important for sprites. Since we’re using a transparent

PNG file, texture transparency should be based on the PNG file transparency.

Figure 2-10. Advanced Texture settings offers greater customization and control over textures

50 CHAPTER 2: Getting Started

Second, Sprite Mode has been set to Multiple, because the texture contains

multiple sprite characters and animations. We’ll later use the Sprite Editor to

select and define these. Third, Pixels to Units is set to 200. This will be an ideal

ratio between pixels to units (in our case) that’ll allow sprites to be seen at an

appropriate size in relation to the environment meshes. For your own projects,

this value will likely require tweaking. Fourth, Wrap Mode has been set to Clamp

to prevent distortion or tiling artifacts from appearing around the edges of sprites.

Figure 2-11. Specifying advanced settings for the CMOD atlas texture

51CHAPTER 2: Getting Started

Note More details on texture properties can be found at the online Unity documentation at

http://docs.unity3d.com/Documentation/Manual/Textures.html.

Step 6: Building Sprites
Unity 4.3 introduced a range of features tailored for creating 2D games. These features primarily

include Sprites, the Sprite Editor, and the Sprite Packer. As mentioned, CMOD will make use

of some of these features for creating billboard sprites in the level. These sprites will represent

enemies, power-ups, weapons, and other GUI elements, as shown in Figure 2-12.

Figure 2-12. Sprites will be used to create enemies, power-ups, weapons, and more

To add Sprite instances to a scene, we’ll need to generate Sprite assets. These are produced using

the Sprite Editor. In short, the Sprite Editor allows us to mark rectangular regions (UV rectangles)

inside an existing atlas texture to use as a sprite. Marking these regions manually with the mouse

can be a long and tedious process, but right now, there’s no quicker method. In addition, to make

the sprites accurately, you’ll probably need to work alongside your image editor application (such as

Photoshop or GIMP) to read and measure pixel coordinates and positions. Remember, I’ve already

created the sprites for you in the sample project, featured in the book project files, in the Chapter2

folder. The Sprite Editor can be accessed from the Texture Properties page by clicking the Sprite

Editor button (see Figure 2-13).

http://docs.unity3d.com/Documentation/Manual/Textures.html

52 CHAPTER 2: Getting Started

Figure 2-13. Using the Sprite Editor to mark out the sprites for CMOD

For CMOD, each separate character, each frame of animation, and each power-up and GUI element

will count as a separate sprite. All of them must be marked by clicking and dragging a Sprite

Selection rectangle around them. See Figure 2-14 to see how I’ve marked the sprites. When you’ve

finished creating sprites, don’t forget to click the Apply button at the top-right corner of the editor to

confirm the changes and generate the Sprite assets.

53CHAPTER 2: Getting Started

Once you’ve defined all sprites in the Sprite Editor, Unity will automatically generate Sprite assets

from them. These are grouped together under the atlas texture asset in the Project panel. You can

expand the texture asset to reveal all sprites contained within (see Figure 2-15). In doing this, CMOD

now has all required sprites. You can even drag and drop sprites from the Project panel and into the

scene, via the Hierarchy panel, to instantiate a sprite in the scene.

Figure 2-14. Sprite sheet for CMOD using the Sprite Editor

Figure 2-15. Generate Sprite Assets are grouped under their associated atlas texture in the Project panel

54 CHAPTER 2: Getting Started

Note More information on the Sprite Editor can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/Manual/SpriteEditor.html.

Step 7: Importing Audio
Next, it’s time to import audio assets into the project. The book companion files for CMOD feature

only a few audio sound effects, created using the sound generator tool SFXR, which can be

downloaded for free from www.drpetter.se/project_sfxr.html. SFXR is software for procedurally

generating the kinds of sound effects commonly used in old-school video games, such as the

original Super Mario Bros. and Sonic the Hedgehog. For CMOD, there are a total of four sound

effects, all in WAV format, stored in the Chapter2/AssetsToImport/Audio folder. These include

Explosion.wav, played whenever enemies are destroyed; Powerup_Collect.wav, played whenever

the player collects a power-up object, such as cash or a weapon; Weapon_Gun.wav, played whenever

the player fires the gun weapon; and finally, Weapon_Punch.wav, played whenever the player uses the

default punch weapon. Go ahead and import all these sound effects into the Unity project, using

the conventional drag-and-drop method. Make sure the sounds are added to the Audio folder in the

Project panel (see Figure 2-16).

Figure 2-16. Importing retro-style audio assets into the project. The audio assets for this book were generated using the free

program SFXR

Every audio file for this project shares an important characteristic that requires us to adjust the

default import settings applied to them. Specifically, every audio file will be 2D and not 3D. That is,

none of our sounds are located at any specific 3D position in the scene. We don’t want or need their

volume to raise or lower based on the nearness or farness of the Player from others in the world.

Rather, the sounds should simply play in all speakers at a single and constant volume. Their purpose

is primarily that of feedback for the Player’s actions in-game, such as collecting a power-up or firing

a weapon. To adjust the default import settings to reflect this, select all imported audio assets, and

disable the 3D Sound check box from the Object Inspector (see Figure 2-17). Once completed, all

audio assets are now successfully imported and configured ready-for-use in the scene.

http://docs.unity3d.com/Documentation/Manual/SpriteEditor.html
http://www.drpetter.se/project_sfxr.html

55CHAPTER 2: Getting Started

Figure 2-17. Configuring the imported audio as 2D sounds, and not 3D sounds

Step 8: Create Prefabs
Importing assets is primarily about collating together and preparing the raw materials on which

our game will be founded and assembled. It’s essentially the lowermost layer or root stage of

development, on top of which all subsequent layers are made. Once importing is completed,

www.itbookshub.com

http://www.allitebooks.org

56 CHAPTER 2: Getting Started

the next stage of development is to create abstracted assets. That is, to use the raw and imported

assets (the asset files) to create any further or more complex assets inside the Unity Editor. One such

asset is the Prefab. In short, the Prefab allows us to drop a collection of assets, like meshes and

scripts, into the scene to compose a more complex entity or thing. Based on that, we may create

an asset, which can thereafter be treated as a complete and separate whole. Prefabs are especially

useful for building modular environments, which is how they’ll be used here for CMOD. But they’re

not limited to simply environment assets: any time we have a collection of objects that work together

as a complete entity, we can use a Prefab. They save us from building and rebuilding similar objects

across different scenes, and even within the same scene.

Note More information on working with Prefabs can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/Manual/Prefabs.html.

The meshes imported into the Project at steps 3 and 4 consist almost entirely of environment pieces,

and not complete environments (see Figure 2-4). Specifically, these pieces include individual items of

furniture, such as file cabinets and desks, and architecture and props like corner sections, crossroad

sections, T-junctions, and door sections. These pieces are designed to be instantiated in the scene,

where they may be combined and recombined into unique arrangements to form more complete and

seamless environments. To form an analogy, we’ll build our game environment from mesh pieces

directly in the Unity Editor, just as physical statues and models are made from Lego bricks—or other

kinds of interlocking blocks that are fitted together. This building-block method of level creation is

often called the modular method because each environment piece is seen as a module in a larger set.

Of course, you can alternatively build a single and huge environment inside your modeling software

of choice, and then import that into Unity as a final and unchangeable mesh. There’s nothing

“wrong” or “incorrect” in doing that per se—it can work. But doing that comes at the cost of

flexibility and versatility, as well as performance. By importing separate and reusable environment

pieces instead, you can recombine them together into a potentially infinite number of environment

combinations. This allows you to assemble many different levels from the same, basic mesh

ingredients. Plus, it works better with Occlusion Culling.

Tip If you need to make large and complex levels (and maybe many of them), then be sure to make the

modular building method your friend. It can save you lots of time. Plus, it’s a really fun and easy way to build

levels, assuming you enjoyed playing with building blocks!

Note More comprehensive information on the modular method of level design can be found in my book

Practical Game Development with Unity and Blender (Cengage Learning, 2014), and also in my 3DMotive

online video course, “Creating Unity-Ready Modular Environments with Blender.”

http://docs.unity3d.com/Documentation/Manual/Prefabs.html

57CHAPTER 2: Getting Started

Importing environment pieces for the modular building method typically leads us into using

Prefabs. Why is this? Take a look at Figure 2-18. There I’ve assembled several pieces together to

form a larger corridor section with an inward corner turn. From the Hierarchy panel, as well as the

Project panel, you can see that this larger arrangement is formed from a total of eight smaller mesh

instances, using four different mesh assets. These meshes are included in the book project files, and

are Corner_Inward, Corner_Outward, Straight_Through, and Single_Section. Together these form a

complete corner section for a corridor.

Figure 2-18. Building common environment modules from meshes

Now, assembling these smaller pieces together into larger areas like this works well enough, at least

for one corner section or one T-section, but overall it takes time and patience to build. However, a

scene will typically have many corridors with turns and corners and T-sections, as well as other similar

architectural configurations that repeat themselves over and over again. Without using Prefabs, we’d

have to duplicate (copy/paste) the different arrangements where required, selecting all pieces that

compose a section, and then duplicate it for reuse elsewhere in the environment. By using Prefabs,

we can dramatically reduce our workload in this context. In the case of a corner section, we can build

just one corner section, make it a Prefab asset, and then reuse that asset for every repetition, as

though it were a separate mesh—just like a rubber stamp can be reused to print many instances of

the same pattern. This can make Prefabs an invaluable tool for making modular environments.

58 CHAPTER 2: Getting Started

Tip While level building, don’t forget to use Vertex, Grid and Rotation snapping in combination with the

Transform tools (Translate, Rotate, and Scale). Vertex snapping lets you align meshes together, exactly at the

seams. To access Vertex Snapping, activate the Translate tool (W key) and then hold down the V key (Vertex

Snapping) to align two meshes together at the vertices. To access Grid Snapping, to move along the grid in

discrete increments, hold down the Ctrl (Cmd) key while translating objects. You can also rotate in discrete

increments too—just hold down Ctrl (Cmd) while rotating!

To make a new Prefab for the corner-section meshes, as shown in Figure 2-18, right-click the mouse

inside the Prefab folder in the Project panel. From the context menu, select Create ➤ Prefab to

produce a new Prefab asset, which begins as an empty container. You can also create the same Prefab

object by choosing Asset ➤ Create ➤ Prefab from the application main menu (see Figure 2-19). I’ve

named the Prefab prefab_Corner_Section.

Figure 2-19. Generating a Prefab asset in preparing for mesh reuse. Prefabs are especially useful tools when creating modular

environments

By default, a Prefab is created as an empty container object, and has no association with any other

assets. To build this association, a parent-child relationship should first be established between

all meshes that you want to include in the Prefab. For the corner section, simply use the Hierarchy

panel to choose any mesh instance in the scene, and then parent all the other meshes to it as child

GameObjects (see Figure 2-20).

59CHAPTER 2: Getting Started

Once a parent-child hierarchy is established, simply drag and drop the parent GameObject from

the Hierarchy panel to the Prefab asset in the Project panel. Doing this establishes the essential

connection between the meshes in the scene and the Prefab asset. In one operation, we will have

generated a Prefab asset featuring all corner-section meshes, and will have replaced the original and

independent meshes in the scene with the Prefab asset (see Figure 2-21).

Figure 2-20. Creating a Parent object for a group of GameObjects, in preparation for creating a Prefab asset

Figure 2-21. Building a Prefab for the modular building method

60 CHAPTER 2: Getting Started

After you’ve made a Prefab like this, you can easily add similar corner sections anywhere in the

level—just as easily as adding single mesh pieces. Simply drag and drop the Prefab asset into the

scene to create new instances (see Figure 2-22).

Figure 2-22. Instantiating multiple corner sections from the same Prefab

Don’t stop here, however! Use this technique to identify all other relevant architectural configurations

that could be abstracted into reusable Prefab objects. The earlier you do this in your workflow,

the easier your level-building experience will be in the long term. However, exercise caution when

reusing only a few Prefabs, because it’s easy for the repetition to become noticeable to the gamer,

making your environments feel dull and lifeless. See Figure 2-23 for a list of the Prefabs I’ve made for

CMOD.

61CHAPTER 2: Getting Started

Step 9: Scene Building
When you’ve imported all relevant assets and established all Prefabs, it’s usually a good time to

start building your scene. Both Mesh assets and Prefabs will inevitably form the raw materials and

ingredients from which scene geometry is made. When inserting the first environment piece (whether a

mesh or a Prefab), I typically use the Transform properties in the Object Inspector to position it exactly

at the world origin, unless there’s a strong overriding reason not to do so. Doing this is not essential,

of course, as you can effectively position your meshes anywhere. But starting at the world origin and

building outward adds a certain degree of neatness and cleanliness to your mesh positions and scene

limits. This might at first seem a trivial preoccupation, but investing time upfront for good organization

and a desire for tidiness like this helps make development smoother. Ideally, development should

smoothly flow along from beginning to end, each step logically and reasonably following the previous.

Figure 2-23. Breaking down environment pieces into Prefabs

Note By level building from the origin and working outward, you can even improve performance on some

platforms, such as mobile devices.

Once you’ve established a first piece in the scene, you can simply add your other pieces onto it,

repeating this procedure until your level is fully constructed as desired. For CMOD, I constructed the

scene in an ad-lib way: just adding different pieces together until I arrived at a design that felt right.

62 CHAPTER 2: Getting Started

But generally, it’s good practice to plan ahead and even draw a scene map or blueprint from which

you can work. Doing this allows you to foresee and correct for structural or logistical problems that

could arise from specific scene arrangements, such as: Won’t this level be too large and tedious for

the player to navigate back and forth? Will that enemy be able to fit through that walkway? Wouldn’t

a longer hallway add some dramatic tension as the player approaches the final room? And so on.

Once you’ve completed your scene arrangement (as shown in Figure 2-24), consider grouping all

environment pieces under a single GameObject, even if that object is an Empty. This allows you to

move the entire scene by transforming one object, should you want or need to. In addition, it allows

you to apply static batching to the environment in one operation, as we’ll see. Before doing so, let’s

consider batching in more detail as it pertains to level design.

Figure 2-24. My completed CMOD scene, ready for lighting and NavMeshes

Unity, and most game engines, draw a sharp technical distinction between objects that have the

potential to move during gameplay (dynamic objects) and those which will never move or change at

all (static objects). Dynamic objects include those such as the player character, enemies, weapons,

vehicles, doors, particle systems, and many more. Static objects include walls, floors, ceilings, tables,

chairs, stairs, windows, mountains, hills, rocks, and more. Typically static objects account for the

majority of scene objects and dynamic objects for the minority (this is not true of every game, but

probably true for most games, and certainly most FPS games). This distinction is an important one for

games and for performance. It influences processes as diverse as lightmapping and navigation meshes.

In short, if an object is static and never moves, then we can mark it as such directly from the Unity

Editor by using the Static check box available for meshes in the Object Inspector. Enabling this for static

objects achieves a range of performance benefits. For example, only static objects can be lightmapped

and only static objects can be baked into navigation meshes. So make sure you enable this for all static

objects; just select the static object and tick the box (see Figure 2-25)!

63CHAPTER 2: Getting Started

Figure 2-25. Be sure to enable the Static check box for static scene elements

If you’ve grouped all your environment pieces as children under a single parent object, then you can

enable static batching for them all in operating, simply by enabling static batching on the parent.

When you enable static batching for the parent, you can cascade the operation downward to all

children, too (see Figure 2-26).

Figure 2-26. Enabling static batching for all environment pieces in one operation. Click Yes to apply

64 CHAPTER 2: Getting Started

Step 10: Lighting and Lightmapping
Now it’s time to consider lighting and lightmapping for CMOD. For me, lightmapping is one of the

most fascinating ideas in game development. It was introduced as a limited solution to an intractable

problem; one which even today has no all-encompassing solution. The problem is that calculating

the effects of real-world lighting in a 3D environment—such as shadows, reflections, and indirect

illumination—is such a computationally expensive process that even the best consumer hardware

cannot approximate the effects with strong believability in real time. Lightmapping is one of the

solutions to this problem. But it has important limitations, as we’ll see.

Lightmapping is achieved in Unity via the Beast lightmapper, which is accessible from the main menu

via Window ➤ Lightmapping (see Figure 2-27). This is a tool that casts rays of light into the scene,

outward from all light sources, and then traces how those rays bounce and react to scene geometry.

The purpose of this is to assess how bright or dark (and which color) the impacted surfaces should

be. This process can be time-consuming (in terms of hours or even days), but it lets developers

precalculate the effects of scene lighting at design time using the Unity Editor, and to bake the results

of that process into dedicated textures, known as lightmaps. The lightmaps contain information

about shadows, color bleeding, indirect illumination, and more. Unity then automatically blends the

lightmaps onto the scene geometry at run-time, on top of the regular textures and materials, to make

the geometry appear illuminated by the lights. Lightmapping is an intricate “trick,” but it can produce

powerful results. The famous author Arthur C. Clarke once said, “Any sufficiently advanced technology

is indistinguishable from magic,” and indeed, lightmapping has a certain kind of “magic” about it.

Figure 2-27. Accessing the Beast lightmapper in Unity

65CHAPTER 2: Getting Started

However, lightmapping has its limitations. Since its effects are all precalculated, lightmapping cannot

account for shadows and illumination cast by dynamic objects—objects that move and change while

the game is running. The solutions to this problem take various forms, and Unity offers Dynamic Lighting

and Light Probes (a special kind of semidynamic lighting). For CMOD and its low-contrast ’toon style,

we’ll use lightmapping for static objects and full dynamic lighting for moveable objects. Light probes

will not be considered further in this book. Dynamic lighting is simply the process of calculating lighting

for moving objects in real time. For performance reasons, this kind of lighting doesn’t consider indirect

illumination and other more realistic effects. This means moving objects will be rendered less realistically

than static ones. But for a cartoon-style game, this shouldn’t prove problematic.

Note When lightmapping, take care over performance to use the LightMap Resolution field to size your

lightmap textures appropriately for your levels and target hardware.

For those interested in light probes, more information can be found at the Unity official documentation at

http://docs.unity3d.com/Documentation/Manual/LightProbes.html.

Before you can illuminate any scene with lightmapping in Unity, you’ll need two things: a scene

with lights and at least one mesh instance marked as Static. If you’ve followed along from the

previous section, then all your scene architecture should be marked as Static, making it eligible for

lightmapping. Lights can be added to the scene using the main menu: GameObject ➤ Create Other

(see Figure 2-28). From here, Unity offers a range of light types—namely, the Directional Light,

Point Light, Spotlight, and Area Light.

www.itbookshub.com

http://docs.unity3d.com/Documentation/Manual/LightProbes.html
http://www.allitebooks.org

66 CHAPTER 2: Getting Started

The light types differ radically in their performance implications. But one general rule to follow when

lighting is less is more. That is, don’t add more lights than are truly necessary. Cut back on excess

and get the best results possible from the fewest number of lights. For CMOD, both the Directional

Light and Area Light can be excluded as viable options. Directional Lights can be excluded because

they’re designed primarily for outdoor environments, which are illuminated by either the sun or

moon. Directional Lights simulate bright light sources at a distant location, casting infinite rays of

light in a single direction. And Area Lights can be excluded generally because we must illuminate

both static and dynamic objects, and they pertain only to lightmapped objects. This leaves us with

a realistic choice between two light types to use (we can use a mixture, too); specifically the Point

Light and the Spotlight. In terms of performance, points are “better” than spots. That is, Spotlights

are typically more expensive than Point Lights. For CMOD then, I will use only Point Lights for the

scene (see Figure 2-29 to see my configuration of Point Lights).

Figure 2-28. Adding lights to your scene

67CHAPTER 2: Getting Started

Note See from Figure 2-29 that I’ve applied the GameObject parenting principle I recommended for

environment meshes. All scene lights are grouped as children beneath a single, parent GameObject.

Figure 2-29. Adding lights to your scene

Once you’ve created a lighting setup you’re happy with, it’s time to lightmap. As mentioned in the

previous chapter, I’ve docked the Lightmapping window as a tab alongside the Object Inspector

so I can view it easily beside the Scene and Game tabs. You may like this arrangement, too. From

the Lightmapping window, open the Bake dialog. Here is where you’ll control how the lightmaps are

generated (see Figure 2-30 to see the settings I’ve used). The points that follow explain some of the

options available and the reasons behind my decisions.

68 CHAPTER 2: Getting Started

	Mode. In Unity 4.3 there are three lightmapping modes available: Single Lightmaps,

Dual Lightmaps, and Directional Lightmaps. Both dual and directional lightmapping

produce two set of lightmaps. Dual lightmapping produces a Near map and a

Far map, and directional lightmapping produces a Color map and a Scale map.

The usage of these maps varies. The point of both of these modes is to increase

realism, giving you a balance between prebaked lightmaps and per-pixel dynamic

lighting, with effects such as specularity and normal maps. However, for the implied

realism of CMOD, we can resort to the “simpler” Single Lightmaps. This mode

produces only one lightmap set, as opposed to multiple. This map (or set of maps)

features all the direct and indirect illumination for the scene. No matter where your

camera is in the scene during gameplay, Unity will always be applying the lightmap

to static objects. Static objects will not receive Dynamic Illumination.

Figure 2-30. Lightmapping CMOD

69CHAPTER 2: Getting Started

	Quality. The default Quality is High—though this setting can be toggled between

High (for production use) and Low (for testing). The value to use here depends

on how you like to work and how long it takes to produce lightmaps and to

make adjustments. But, when building the final lightmaps for your game, be sure

to use the High quality setting.

	Bounce Boost and Bounce Intensity (Pro Only feature). Together these

values control the influence and power of indirect illumination in the lightmaps.

During the lightmap generation process, the lightmapper emits rays from all

light sources in the scene, and these travel in a straight line until they strike and

bounce away from any surfaces they contact. The bounced light loses some of

its intensity and inherits some of the color from the surface it previously hit. This

is why (for example) a white floor near a red wall will be “splashed” with a tint of

red, as light from the wall bounces and strikes the floor. In the “real world” there

is no known limit to the number of light bounces allowed. But for computers,

this kind of potentially infinite regression is not permitted, and so a concrete

limit must be set on the number of bounces. This limit is controlled by Bounce

Boost. Higher values theoretically produce more accurate and believable results

at the cost of calculation time. In practice, however, you don’t usually need to

go very high for results that are “believable enough.” The Bounce Intensity value

is a multiplier (brightness increase) for each bounced ray. For the CMOD level

in Figure 2-29, I think the values of 1.38 and 1.42 work for Bounce Boost and

Intensity, respectively. I did not calculate these numbers in anyway. I simply

played around and made multiple lightmap bakes, tweaking the settings and

trying again several times, before finally settling on these values. Through

successive builds and refinement you can arrive at values that work best for you.

	Ambient Occlusion (Pro Only feature). Ambient Occlusion (AO) simulates

one symptom of indirect illumination known as Contact Shadows. This refers

to the darkening that occurs inside and near the crevices that form when two

solid surfaces meet, such as where the floor meets a wall, or a coffee mug

base meets the table. In and around those regions there’s a thin border of

shadow or darkening that results because light rays are more occluded or

blocked from those regions. By using Ambient Occlusion, you can enhance

the general volume of your environments and the embeddedness of your

objects—making them feel much more of an integrated part of the world. By

default, Ambient Occlusion is disabled. You can enable it (on the Pro version

of Unity) by switching the Ambient Occlusion slider to a value above 0. A value

of 1 means AO will take full effect, and lower values between 0 and 1 act as an

opacity control. The Ambient Occlusion slider works in combination with the

Max Distance and Contrast sliders to control the size and darkness of the AO

shadows generated in crevices. For CMOD, the values of 0.1 and 1 work well for

Max Distance and Contrast, respectively.

70 CHAPTER 2: Getting Started

	Resolution. This works in combination with the total surface area of your

meshes in the scene to determine the final size of the generated lightmaps in

pixels. When the Lightmapping window is active, you’ll see an accompanying

Lightmap Display dialog in the Scene viewport (see Figure 2-31). By enabling

the Show Resolution check box, a checker-pattern texture map will be projected

over all static scene geometry, indicating how the pixels in the lightmap will be

distributed. Each box in the checker-pattern stands in for a single pixel in the

lightmap. In short, the “ideal” value for resolution should be the lowest possible

while still retaining the lighting quality suitable for your game and while making

best use of the texture space in the lightmap. Like most other values in the

Lightmapping window, a certain degree of tweaking and retesting is required.

For my CMOD level, a value of 25 looks good.

Figure 2-31. Previewing lightmap resolution using the Lightmap Display dialog

Once you’re happy with the settings you’ve specified, the lightmap textures can be produced by

pressing the Bake Scene button from the Lightmap Bake panel (see Figure 2-30). You may have to

wait a while (the progress status is viewable in the lower-right corner of the Editor window). Once

generated, the Lightmapping window indicates how many lightmap textures were generated and

their size in pixels, which is based on the total mesh surface area in the scene and the Resolution

setting (see Figure 2-32). The lightmaps themselves are added as texture assets in the Project panel

(see Figure 2-33).

71CHAPTER 2: Getting Started

Figure 2-32. Information on the generated lightmaps displayed in the Lightmapping window

72 CHAPTER 2: Getting Started

Figure 2-34 shows you how the CMOD level looks after lightmapping. To prove the level is really

lightmapped, you could delete all lights in the scene. If you did that, the illumination wouldn’t change

because the lighting is now being taken from the maps and not from the lights. However, be sure to

undo any such deletion once you’re done testing, as we’ll need the lights for dynamic objects and if

we ever need to rebake the lightmaps.

Figure 2-33. Generated lightmaps are added to the project like a regular texture and are accessible via the Project panel

Figure 2-34. The final, lightmapped CMOD scene

73CHAPTER 2: Getting Started

Step 11: Building a Navigation Mesh
Later in this book, we’ll be creating three distinct Enemy characters to which we’ve been introduced

already. These are the Drone, the Tough Guy, and Mr. Big Cheese To see these characters, check

out Figures 1-2, 1-3, and 1-4 in Chapter 1. As mentioned, these enemies will be “intelligent.” I use

the word intelligent here in a narrow and precise sense. I mean the characters will not simply stand

around the scene motionlessly doing “nothing,” like props or inanimate objects. Instead, they’ll move

around and actively search for the Player. This process of “moving around” and “searching” for the

Player involves intelligence.

The scene I’ve created for CMOD—assembled from environment pieces—consists of larger rooms

connected by narrow and winding corridors, as shown in Figure 2-29. These corridors have twists

and turns, and they also connect with one another to form junctions, points at which it’s possible to

travel in more than one direction. This kind of scene layout means that anytime an Enemy needs to

move, it must make reasoned decisions about where it should go and how it should get there. The

enemy shouldn’t simply walk through walls and material objects. It’s supposed to avoid these. This

kind of obstacle avoidance is known as navigation. Further, the enemy should move in a determined

and concerted way, travelling from one point to a clear destination elsewhere, as opposed to moving

erratically backward and forward with no sense of direction at all. This kind of route planning is known

as pathfinding. Both of these concepts are achieved in different ways in Unity, but perhaps the most

common is through navigation meshes. The details of implementing navigation and pathfinding are

considered in Chapter 7. However, in getting started with this project, and in generally building the

scene, some preliminary steps must be taken here for pathfinding. Specifically, we’ll build or bake a

navigation mesh, much like we baked lighting through lightmaps. The navigation mesh will be used

later in Chapter 7, when creating enemies.

Note Most navigation mesh features are included in the Unity free version, as of Unity 4.3. However,

off-mesh links (for connecting multiple NavMeshes), are a Pro Only feature.

Note More information on lightmapping in Unity can be found at the Unity online documentation at

http://docs.unity3d.com/Documentation/Manual/LightmappingInDepth.html.

In Unity terminology, an enemy is an agent (or more fully a NavMesh Agent). A NavMesh Agent is

simply any GameObject that must intelligently move around the scene when required. Whenever an

agent is told to move toward a destination (any Vector3 location within the scene), it first needs to

plan the most sensible route based on its current position, and then to follow that route while avoiding

http://docs.unity3d.com/Documentation/Manual/LightmappingInDepth.html

74 CHAPTER 2: Getting Started

all tangible obstacles. To calculate this route and to follow it optimally, Unity relies on an internal and

special asset, known as a navigation mesh. The navigation mesh is a special kind of mesh asset that

Unity generates automatically. It’s composed like a regular mesh, from vertices, edges, and faces, but

it’s not renderable, unlike most other meshes. The purpose of the navigation mesh is to approximate,

in low-poly form, the walkable topology of the scene. Put simply: it represents the scene floor on

which agents can walk. By isolating just the walkable regions of the scene in mesh form, Unity can

quickly and more easily calculate valid routes to destinations and have agents navigate there with as

little error as possible. In this section, we’ll generate the navigation mesh for the scene. Chapter 7 will

then make use of this mesh, as we build intelligent enemies.

To access the Navigation Mesh tools, select the main menu option Window ➤ Navigation

(see Figure 2-35). For convenience, this dialog can be docked as a tab alongside the Object

Inspector, allowing you to see the Scene and Game views alongside the Navigation tools.

Figure 2-35. Accessing the Navigation tools

75CHAPTER 2: Getting Started

After all static architectural meshes are marked at least as Navigation Static, we can proceed to

generate the Navigation Mesh asset. To do this, switch to the Navigation window (as shown in

Figure 2-37, docked alongside the Object Inspector), and accept the default settings (for now), and

then click the Bake button. For smaller scenes, like our CMOD scene, the Bake process should be

fast—maybe even a second or less!

Figure 2-36. Only meshes marked as Navigation Static are factored into the navigation mesh

Before we can bake a navigation mesh, ensure all the environment pieces are marked as Static,

and specifically as Navigation Static (see Figure 2-36). This marks the environment meshes as a

nonmoveable and walkable region. Unity detects the walkable region as horizontally-aligned faces

whose normals point upward in the Y direction, as opposed to vertically-aligned faces, such as walls

and other obstacles.

76 CHAPTER 2: Getting Started

Figure 2-37. Navigation meshes are generated from scene geometry

Once generated, the navigation mesh (NavMesh) appears as a planar blue mesh in the viewport,

on top of the scene floor. The NavMesh asset itself can also be found in the Project panel, alongside

any generated lightmaps. Using the default settings from the Navigation window, the NavMesh

will differ from scene to scene, depending on its layout and meshes. Consequently, if your scene

arrangement is not exactly like mine or if your meshes are at a different scale, then your navigation

mesh may differ considerably. Mine is shown in Figure 2-38. If you don’t see a navigation mesh in

77CHAPTER 2: Getting Started

the viewport, then be sure to enable the Show NavMesh option in the NavMesh Display dialog (also

shown in Figure 2-38), which appears in the bottom-right corner of the Scene viewport whenever the

Navigation window is active.

Figure 2-38. Previewing a navigation mesh in the viewport. These are the default Bake settings I’m using for CMOD. They’ll be

edited and tweaked further as the chapter progresses

The blue NavMesh on the floor represents the area inside which NavMesh Agents may walk and

move whenever they travel using Pathfinding. NavMesh Agents generally don’t walk outside the

boundaries of a NavMesh; and thus the NavMesh marks the limits of where an agent may exist in

the scene at any one time. Like my default NavMesh in Figure 2-38, your NavMesh may also exhibit

a number of anomalies. These can be corrected by tweaking the Bake settings, as we’ll see here.

The following lists these anomalies along with their solutions.

	NavMesh is too skinny and is cut apart! The NavMesh generated in Figure 2-38

is highlighted in blue. From this, it’s clear the mesh doesn’t extend over all the

walkable regions of the scene. For example, there are stretches of space on the

floor between the walls and the NavMesh edges. The NavMesh appears as just

a thin sliver of a mesh, snaking its way along the center of the floor without ever

expanding outward to meet the walls. Furthermore, the mesh is not continuous

but is broken apart inside the doorways, leaving gaps or holes in the mesh that

cannot be bridged. NavMesh agents typically expect a single and continuous

NavMesh inside which they may walk. There are exceptions to this rule, but

these are not considered in this book.

78 CHAPTER 2: Getting Started

This problem occurs because of the Radius setting in the Navigation window. Radius defines an

imaginary circle that would entirely encompass a hypothetical agent, expected to walk on the mesh.

Since agents are usually characters, they have both width and depth. Therefore, agents can’t walk

exactly against walls or other physical obstacles, because their very tangibility blocks them from

passing. They’ll always walk slightly away from the wall or a physical obstacle. For this reason, the

Radius setting adds an extra unwalkable buffer of space between the NavMesh edge and a physical

obstacle, such as the wall, to prevent clipping and errant collisions.

This also explains why there’s breakage or disconnection in the NavMesh at doorways. This is

because there’s simply not enough room on the floor between either sides of the door to allow an

agent to pass. This hints at the solution: to reduce the Radius setting. If your NavMesh seems too

thin for your floor or is broken apart inside doorways, then try reducing the radius. For my scene, I’ve

lowered the radius from 1 to 0.4. This still leaves appropriate space between the NavMesh and walls,

but also allows travel through doorways. Take a look at Figure 2-39. Later in Chapter 7, when adding

enemy agents, this value may need further revision.

Figure 2-39. Decreasing NavMesh Radius to increase the walkable regions in the scene

	NavMesh is offset upward above the floor. The NavMesh is an approximation

of the environment geometry in general, meaning there’s room for inaccuracy.

Sometimes your NavMesh will seem to hover above the true scene floor, rather

than rest on it or close to it, as you might expect it to do (see Figure 2-40).

79CHAPTER 2: Getting Started

Figure 2-40. Generated NavMesh sometimes hovers above the true scene floor

Figure 2-41. Adjusting height inaccuracy to position NavMesh onto the floor

In some cases, such as with terrains, this problem can be fixed by enabling the Height Mesh check

box and then rebaking the NavMesh. But more often, it’s solved by reducing the Height Inaccuracy

setting, under the Advanced group in the Navigation window. Be sure to rebake the NavMesh on

editing each setting. For my CMOD level, I reduced Height Inaccuracy from 15 to 1 (see Figure 2-41).

Note More information on navigation meshes can be found at the online Unity documentation at

http://docs.unity3d.com/Documentation/Manual/NavmeshandPathfinding.html.

http://docs.unity3d.com/Documentation/Manual/NavmeshandPathfinding.html

80 CHAPTER 2: Getting Started

Conclusion
This chapter charted the beginning of Crazy Mad Office Dude in terms of project creation, asset

importing and configuration, as well as scene building and general project management. The

completed project so far can be found in the book companion files, inside the Chapter2 folder. The

scope of this chapter is vast, covering a range of powerful Unity features; features that together

would occupy many chapters in an introductory book. In doing this, many subjects were necessarily

discussed only briefly or parochially—that is, in ways specific to this project. The reason is because

the main focus of this book is on C# development in Unity, as opposed to wider tasks such as

lightmapping and navigation meshes.

Taken as a totality, this chapter documents everything you need to do and know for CMOD to take

the project from an empty state to one that’s prepped and ready for customization through C#. Of

course, this general preparation process and workflow applies more widely and to potentially many

more projects than CMOD. The principles put into practice here, such as the modular building

method and lightmapping, can be abstracted from their particular context for CMOD and seen

generally. But, the main point of this chapter is to show you a practical case study in Unity; one that

begins from an empty project and moves toward a state where we’re ready to start programming.

At this point, we’ve now reached that state, and before moving onward, let’s recap what we’ve

learned here. By now, you should be able to do the following:

Create Unity projects and import and configure assets, as well as understand 	
the rationale behind specific importing and organization techniques

Apply a C# FBX ScaleFix to imported meshes, automatically customizing their 	
scale to 1

Appreciate import considerations around mesh colliders and lightmap UVs	
Understand Texture Import settings and their relationship to Sprite assets	
Know how to use the Sprite Editor to create sprites from atlas textures	
Import and configure 2D audio files	
Understand the modular building method and the importance of Prefabs	
Generate usable lightmaps and work with Lightmap assets	
Understand the importance of Lightmap settings	
Generate navigation meshes	
Understand how to edit Generation settings to produce appropriate navigation 	
meshes for your scenes

81

Chapter 3
Event Handling

Now we’re ready to begin game coding in C#, and there’s a lot to do. At this stage, you should have

a prepped Unity project available, either a project you’ve created manually by following along with

previous chapters or the ready-made project provided in the book companion files in the Chapter2

folder (as shown in Figure 3-1). This project represents CMOD so far and includes one scene file with

a complete level, including meshes, prefabs, textures, lighting, and navigation. From this project,

we’ll begin in this chapter to add new behavior and functionality through C# scripting.

Figure 3-1. The completed project so far, which can be found in the book companion files in the Chapter2 folder. In this chapter,

we’ll start add C# script by coding an event-handling system

82 CHAPTER 3: Event Handling

There are many ways to begin game coding and implementation. Some developers start by

creating a GameManager class to handle the central game logic and rules, such as the win and loss

conditions. Some instead focus on building critical game entities, such as the Player character and

enemies. And others take alternative approaches. None of these approaches are right or wrong in

any objective sense per se. They simply represent different and pragmatic approaches, which may

be more or less suited to your specific needs or to your particular style. But regardless of which

approach you take, it’s certain that development has to begin somewhere. For my part, I typically

begin by creating an event-handling system and I think that approach is serviceable here, for

reasons I’ll state shortly. First, let’s consider events and event handling, and specifically how it more

generally relates to a game.

Events and Responses
For game developers, game worlds are ultimately deterministic systems. This means that, once

the game begins (the beginning of game time), everything else that follows does so because of a

sequential flow of events. That is, everything that happens is a calculated response to a related and

previous cause, which we may call an event. For example, enemies attack the player when he or she

comes into their line of sight because there exists artificial intelligence (AI) functionality telling the

enemies to act that way under those very conditions. Similarly, the Player character fires its weapons

when it does, only because there exists an underlying mechanism watching for human input and for

responding to it when the player presses the designated “fire” button, whichever button that happens

to be. Seen in this way, a video game can be conceived as an integrated system of events and

responses. Specifically, an event happens and something else happens in response. And this process

goes on each and every frame, until the game is terminated in some way—hopefully by the player

pressing Quit as opposed to the game’s crashing from a bug! Among these events, two main kinds

can be identified: gameplay-level events and system-level events. These two terms are not part of an

industry standard vocabulary so much as terms I’m inventing here for convenience and description.

	Gameplay-level events. These describe all events, which even a reflective and

thoughtful gamer might identify themselves during gameplay, as being events in

the game world. These include events such as when the player presses a lever

on the wall—perhaps to unlock a door or open a secret passageway, or when

an enemy is killed, or when the player enters a room or region in the level, or

when all power-ups have been collected. The total number of possible events

belonging to this group is potentially infinite, but all of them happen in the game

world. They are an integral part of the “fiction.”

	System-level events. These events are in a fundamental sense hidden from

the gamer and exist outside the game world. These are the events that only the

game developer knows about and include all core events, which are part of the

underlying game mechanics. They pertain to the foundational wheels and cogs

of the game. Such events include when the player saves and loads her game,

when an error occurs, when the game is paused, when the system resolution

is changed, or when a network timeout occurs. Like gameplay-level events,

however, system-level events may be a potentially infinite in number. They may

not, of course, be infinite in practice because computers have a maximum

capacity. But they are potentially infinite in that there’s no obvious limit to the

number of events you could invent or think about.

83CHAPTER 3: Event Handling

The core ingredient uniting all events, however, whether gameplay or system level, is that they may

invoke a response, although sometimes no response need actually occur. In other words, when an

event happens (and they usually happen very often) the game may need to do something else (which

is usually very often, too). That “something else” could be small and relatively inconsequential, or it

could be mammoth and potentially game-changing. In principle, there’s really no limit to the number

of responses that follow from an event, or to the significance of those responses. In fact, when you

think about it further, there really are only events, because every response or reaction to an event could

potentially be an event itself for further action, and so on. But essentially, the important point to take

away from all of this is that events and responses are all-pervasive in games. They’re everywhere and

there’s no avoiding them. There are only different ways of handling and working with them. Those

methods and ways can indeed differ quite significantly, but all of them rest on the same core concepts.

Event Handling
Games, as we’ve seen, can be conceived as a chain of events and responses. Event handling is the

practice of working with and managing those events and responses in-game. Thus, event handling is

something we must engineer and build into a game. It’s not something that exists ready-made for us,

even with Unity. In this chapter, we’ll be using C# to engineer such a system. However, the question

arises as to why we should begin game development here, as opposed to elsewhere. After all, if

there are different ways to begin development, and none of them necessarily right or wrong, then it

surely cannot be wrong to begin elsewhere. And this is true. But nonetheless there are compelling

reasons to begin here. These are as follows:

	Events are foundational. Events are everywhere in games. Whenever an

underlying action or function in code has the potential to effect something

else in-game, then in practice an event is happening, even if you don’t always

see it that way at the time. And every time you think it’d be useful for some

process to detect and respond to a situation happening elsewhere, you’ve just

thought about an event-and-response scenario. Events are thus so foundational

to games that it’s almost impossible to create any functionality or classes or

behavior without referring to them or using them. Consequently, since the

practice of making games is essentially an exercise in engineering and building,

it’s good practice to begin with foundations. It’s good practice to make those

foundations strong so they may sustain the complexities of the structure above.

	Events are abstract. This means that events are relevant to almost every kind of

game. And something important and powerful comes from this; namely, events

are not design-restrictive. That is, being so general and widely applicable, events

themselves never place constraints or limitations on how you should implement or

make the rest of your game. Events, for example, never say that enemies cannot

have range or magical attacks. They never require you to keep the vehicles in

your game to only ground-based ones, as opposed to airborne or seaborne ones.

Events as a concept really don’t care about these specifics or particular instances.

They have a more general and abstract nature that frees them from specifics. And

so in practice this frequently means that if you create events from the outset, you

don’t put any technical or logistical restrictions on the kinds of things you may have

elsewhere in the game. Thus, coding events empower you and never limit you.

There’s no good reason to narrow your horizons before it’s necessary to do so.

84 CHAPTER 3: Event Handling

Planning Event Handling
Before jumping into coding an event-handling system, or any functionality for that matter, it’s a

good idea to plan and think ahead. This reduces our chances of making mistakes and wasting time.

Of course, it doesn’t eradicate our chances entirely! In this chapter, we’ll code a dedicated event-

handling class, and there are strong reasons for doing this. Rather than list them, let’s see what they

are in practice. Specifically, let’s consider some “simpler” and alternative ways of handling events,

and examine the attendant problems or limitations associated with them.

Perhaps the simplest method to event handling is to forget about creating a dedicated class

altogether, and to code event-handler functionality directly into all the classes that need it. For

example, let’s imagine we need to detect an event, such as when Player health falls to 0 or below, so

we can kill the Player and display a “Game Over” message. The event is when Player health falls to 0

or below, and the response is die and show “Game Over”. This kind of functionality could be coded

into the Player class, as shown in Listing 3-1.

Listing 3-1. Player Class Detecting Death Events

using UnityEngine;
using System;

//Player class
public class Player: MonoBehaviour
{
 //[...] Other stuff declared here

 //Health variable
 public int Health = 100;

 //[...] Other functions would be included here

 //Update function called on each frame
 void Update()
 {
 //Check player health
 If(Health <= 0)
 Die(); //Is <= 0, then run death functionality
 }
}

Note The class coded in Listing 3-1, and in subsequent parts of this section, is hypothetical only. That is,

it’s an imaginary class used merely to demonstrate a point. It’s not necessary to code this class yourself or to

include it in the final CMOD project.

85CHAPTER 3: Event Handling

This code will work in the sense that it’ll always detect when the Player’s health falls to 0 or below,

and then initiates the appropriate death behavior as a response. However, the code is really not

efficient because it executes many more times than necessary. Specifically, on each and every frame

(which could be over 100 times per second) the code always checks Player health, even if the health

has never changed since the last frame. The solution to this problem initially is simply to arrange our

code more effectively. On closer inspection, we see that the only time it’s truly necessary to evaluate

Player health is when it changes, either when it increases or decreases; a health change event. At

no other time would it be necessary to check Player health, because we’d know that, without any

changes, it’d always be the same as when we last evaluated it.

So how could we recode this hypothetical Player class to support the proposed repair? One way

is to use accessor methods or C# properties. These are special kinds of functions that provide

controlled, public access to private variables or members of the class. It is a specific kind of

variable-function pairing in which the only way to set or read the variable is through its property

function, or accessor method. This means that every time the property function is called to set the

value for a private variable, we get the opportunity to execute behavior, including event functionality

and data validation. This is shown in action in Listing 3-2.

Listing 3-2. Using C# Properties to Detect Health Change Events

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour
{
 //Properties to access and validate variable
 public int Health
 {
 //If reading variable then return health
 get{return iHealth;}

 //Chang health value, now validate
 set
 {
 //Update health
 iHealth = value;

 //Check if player should die
 if(iHealth <= 0)
 Die();
 }
 }

 //Private health variable
 private int iHealth = 100;

 public void Die()
 {
 //Handle Die Code Here
 }
}

86 CHAPTER 3: Event Handling

This code is much better. It lacks an Update function and no longer wastes precious time executing

health validation code unnecessarily on every frame. Health validation has instead been shifted from

Update to the Set aspect of the Health property, which is executed only when the Health value is

changed. The Set function will be executed for every assignment to the Health variable (see Listing 3-3).

Listing 3-3. Setting Player Health: This Code Will Execute the Set Function for the C# Health Property

PlayerInstance.Health = 0;

This refined Player class is fine and functional insofar as it goes, but perhaps it doesn’t go quite

far enough. Though this code is better at detecting and responding to health change events than

its previous incarnation, there’s still a logistical problem we simply can’t get around if we just go on

restricting our refinements to the Player class alone. Specifically, what should we do if a different

class (not the Player) needs to detect and respond to Player health changes? For example, a

hypothetical GameManager class might need to know that when Player health reaches close to 0,

it needs to play a warning and alert sound. We could, of course, fix this in a specific and ad hoc

way by adding some extra code to the Player Health(Set) function, which notifies a separate

GameManager class about the health change event. This update might look like Listing 3-4.

Listing 3-4. Adapting the Player Class Health Change Event to Notify a Game Manager Class

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour
{
 //Properties to access and validate variable
 public int Health
 {
 //If reading variable then return health
 get{return iHealth;}

 //Chang health value, now validate
 set
 {
 //Update health
 iHealth = value;

 //Check if player should die
 if(iHealth <= 0)
 Die();

Note The disadvantage to using C# properties in Unity, as opposed to using directly accessible public

variables, is their lack of visibility in the Object Inspector. In short, C# properties are always hidden to the

Object Inspector and so cannot be changed from the Editor. You can only access them from code.

87CHAPTER 3: Event Handling

 //Update Game Manager about health change event
 GameManager.OnPlayerHealthChange();
 }
 }

 //Private health variable
 private int iHealth = 100;

 public void Die()
 {
 //Handle Die Code Here
 }
}

This solution, however, is not robust. After all, if even more classes (beyond the GameManager) needed

to know about and respond to Player health change events, then we’d have to return to the Player

source code (as we did earlier) and edit the Health(Set) function to call even more functions,

propagating the health change event on an individual, per-class basis. Unfortunately, this problem is

part of a larger and more general one that’s in no way restricted to player health change events. The

problem of broadcasting events to objects applies to all kinds of objects and all kinds of events. For

every kind of event, there could be potentially many objects in need of notification, not just the object

that triggered the event or that was first notified. It is, of course, possible to solve the problem for

each event in a very specific and ad hoc way, as we’ve done here with the hypothetical GameManager

class. But in games that handle many events, this would needlessly increase the complexity of our

source code to unmanageable extents. It’s easy for event handling to “get out of hand” unless we

take a more disciplined and streamlined approach. This is exactly what we’ll do next.

Planning a Dedicated Event-Handling System
The previous section justified the general desirability for taking a more focused and streamlined

approach toward events and event handling in games. In this section, we’ll establish the beginnings

of a dedicated and centralized C# event-handling class, which I’ll name the NotificationsManager.

I’ll create the code for this class inside the script file NotificationsManager.cs. In general, a game

or scene should have only one active instance of this class in memory, and no more than one. This

kind of object is known as a Singleton object, a concept considered further in the next chapter. In

short, the NotificationsManager will be singularly responsible for broadcasting all events to all other

objects that must know about those events. In other words, its duty will be to notify every object

in the game about every event it must handle, as and when the event happens. In essence, the

NotificationsManager will work as follows (also see Figure 3-2).

88 CHAPTER 3: Event Handling

1. An event happens during gameplay and is detected immediately by a class,

such as when the Player class adjusts player health through a C# property.

The object that causes or detects an event is known as the Poster. Once

the event occurs, the Poster proceeds to post a notification about it to the

NotificationsManager object. The notification sent to the Manager by the

Poster is essentially a data structure containing event-specific information,

such as the event type. Event types may include OnPlayerHealthChange,

OnLevelCompleted, OnEnemyDestroyed, and others. The types themselves will

vary from game to game, depending on the events you need.

2. Any objects that must be notified about the occurrence of specific event

types, such as OnPlayerHealthChange, should register themselves as

Listeners with the NotificationsManager class. By registering itself as

a Listener for a specific event type, the class is effectively asking the

NotificationsManager to tell it about all matching event occurrences, as and

when they happen.

3. Based on this, the NotificationsManager can perform its work effectively.

Specifically, on receiving an event notification from a Poster, the

NotificationsManager immediately notifies all registered Listeners for that

event. In this way, every Listener is always immediately notified about every

relevant event, and can respond as appropriate.

Figure 3-2. NotificationsManager workflow

89CHAPTER 3: Event Handling

There are two significant and distinct advantages to this event-handling system:

	It is centralized. There should be one and just one instance of

NoticationsManager in memory at any time, and this instance carries the entire

responsibility for event handling between objects. Its dedicated purpose is

to broadcast all event notifications to all appropriate objects. Thus, through

centralization—by assigning the workload of event handling to a single class

in this way—we achieve two important benefits. First, we improve debugging

simplicity because, if there’s ever a problem with event-handling, we

immediately know where in our code to start our bug search: specifically inside

the NoticationsManager class. And second, we simplify all other classes and

objects because none of them need concern themselves with event handling

anymore, now that we have a NoticationsManager to do that work for us.

	It is abstract and recyclable. The NotificationsManager distills the concepts

of events and event handling into a single class in both a general and abstract

way that makes no specific demands or requirements upon other classes.

In short, it doesn’t tell other classes how they should be implemented—their

implementation is separate and independent from the NotificationsManager.

This means the NotificationsManager can be used not just for event-handling in

CMOD specifically, but more widely in practically any kind of game. It means, in

theory, we can import NotificationsManager.cs into any other Unity project and

use it straightaway to manage events, without making any code changes. That,

in itself, saves us lots of work and time!

Getting Started with NotificationsManager
Let’s now put our NotificationsManager plan into practice inside Unity. To create this class, we’ll

need to start by creating a new C# source file. I’ll explain how to do that here in case you need a

refresher, but for subsequent classes created throughout the rest of the book, I’ll assume you already

know how to do it. To create a new C# source file, right-click the Scripts folder of the Project panel,

and select Create ➤ C# Script from the context menu (as shown in Figure 3-3). Alternatively, you

can select Assets ➤ Create ➤ C# Script from the application menu. Be sure to name the file

NotificationsManager.cs.

Note The NotificationsManager developed will be based loosely on the well-known, third-party

class NotificationsCenter, available online for free from the Unity Community web site at

http://wiki.unity3d.com/index.php?title=CSharpNotificationCenter.

However, although NotificationsManager will be based on NotificationsCenter, it will take a slightly

different approach, as well as implement additional functionality. It’s worth mentioning, too, that you don’t

need to be familiar with the NotificationsCenter to implement the NotificationsManager here. We’ll

explore NotificationsManager creation from the very beginning.

http://wiki.unity3d.com/index.php?title=CSharpNotificationCenter

90 CHAPTER 3: Event Handling

Double-click the NotificationsManager.cs file inside the Project panel to open it for editing in

MonoDevelop (as shown in Figure 3-4), a separate and third-party IDE that ships with Unity.

You may also use your own code editors if you’d prefer, such as Visual Studio, Notepad++

(http://notepad-plus-plus.org/), or any other text editor. To compile the code, you only need

to save the file in the editor, and then return to the Unity Editor window. Unity detects the code

changes in the file and compiles the code automatically. While the code is compiling, Unity displays

a spinning Busy icon in the lower-right section of the application toolbar.

Figure 3-3. Creating a new C# script file for the NotificationsManager class

http://notepad-plus-plus.org/

91CHAPTER 3: Event Handling

If any compile-time errors are encountered, these are listed in the Editor Console window, which can

be shown by selecting Window ➤ Console from the application main menu, as shown in Figure 3-5.

Figure 3-4. Editing code inside MonoDevelop. You can use other code editors, too, if you prefer; however, this book will use

MonoDevelop

Figure 3-5. Compile-time errors are printed inside the Console window

By default, all newly created C# classes in Unity are descended from class MonoBehaviour,

which is part of the Unity API. See Listing 3-5 to see the autogenerated code. In essence,

MonoBehaviour represents the base class from which all components are ultimately derived. For the

NotificationsManager, and indeed for many classes, MonoBehaviour is an entirely suitable default

class from which to derive, and so can be left as-is. In some cases, however, as we’ll see later, we’ll

need to change the super-class to a different type.

92 CHAPTER 3: Event Handling

Listing 3-5. Autogenerated Class for NotificationsManager, Descended from MonoBehaviour

using UnityEngine;
using System.Collections;

public class NotificationsManager : MonoBehaviour
{
 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

In addition to being descended from MonoBehaviour, all newly generated classes come with

predeclared Start and Update functions. The Start function is called automatically once at object

creation (after the Awake function), and the Update function is called automatically once per frame,

provided the GameObject is active—that is, provided the object has its active member set to true.

By default, all GameObjects are active unless they are explicitly deactivated with a call to

GameObject.SetActive. For the NotificationsManager class, we can safely delete both the Start

and Update functions, as we’ll never need them.

Tip If your class never needs or uses a function, such as Start and Update, then remove them from the

class. This makes your code neater generally, and there are even marginal performance improvements to

be gained.

Note More information on MonoBehaviour can be found at the online Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html.

Keeping Track of Notifications with .NET Dictionaries
Thinking carefully about the NotificationsManager class we know that (a) Posters must tell the

NotificationsManager when an event occurs, and (b) when told about an event, the NotificationsManager

should notify all registered Listeners for that event. This entails that the Notifications Manager

must internally maintain a list of all listeners that should be notified for an event when it happens.

These listeners should be organized into lists by event type. That is, for any event type (such as

OnPlayerHealthChange) there could be none, one, or more listeners. Regardless, however many or

however few objects are listening for an event, it’s the responsibility of the NotificationsManager to notify

them all whenever that event happens. And so ultimately our class has two main technical requirements:

we must maintain a list of events, and for each type we must maintain a list of associated listeners.

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

93CHAPTER 3: Event Handling

There are several ways such a configuration could be implemented into a C# class. One way would

be to use a two-dimensional array: one dimension for the events and another for the listeners.

Listing 3-6 shows you how this could work in practice by using a two-dimensional array of strings.

Listing 3-6. Using a Two-Dimensional Array to Manage Events and Listeners

using UnityEngine;
using System.Collections;

public class NotificationsManager : MonoBehaviour
{
 //Creates an array for 2 Event Types, each allowed a total of 2 listeners (Identified by
GameObject Name)
 string[,] Listeners = new string[2,2];

 //Function to notify listeners for a matching event (specified by integer ID)
 void NotifyListeners(int EventThatHappened)
 {
 //Loop through listeners
 for(int i=0; i<2; i++)
 {
 //Get listener GameObject in scene based on name
 GameObject Listener = GameObject.Find(Listeners[EventThatHappened,i]);

 //Notify listener here. Call function.
 }
 }
}

The chief problem with this approach is its “static” and inflexible nature, which can be found in the

declaration line for the two-dimensional array. There, the maximum array size was specified and fixed

at declaration time to a size of (2, 2), which allows for a total of two events and two listeners. Now,

this wouldn’t be troublesome if we knew in advance that we only needed exactly two events and two

listeners for each type; but typically, we don’t have such foreknowledge. Typically, we need flexibility.

We need to keep track of any number of events and any number of listeners for each type. If we stick

with fixed-size arrays, we’ll usually end up with either more elements than we need, or fewer.

Instead, we’ll want an array that sizes itself at runtime to exactly what we need, no more and no less.

Plus, we’ll want that array to dynamically change its size, too—to shrink if we remove events and

listeners, and to grow if we add them. This kind of array in which we can add and remove items at

runtime is called a dynamic array, because its size can change to accommodate exactly the number of

items being held at any one time. The disadvantage of dynamic arrays compared to the “conventional”

static arrays pertains to performance. Specifically, dynamic arrays are more computationally expensive

than static ones, as they typically have “more to do” at runtime, such as changing size. For this reason,

it’s recommend to always use static arrays when dealing with array-like data whose size and quantity

are known in advance. But often, we’ll need to use dynamic arrays just as we do here, because we

can’t avoid them effectively.

94 CHAPTER 3: Event Handling

Dynamic arrays take various forms and implementations, being optimized for different purposes.

One famous implementation is called a linked list, which is simply a linear list of items that grows and

shrinks as and when items are added and removed, respectively. For the NotificationsManager, and

for keeping track of events and notifications, we’ll use a linked list, plus a hash table–like list, known

as a Dictionary. The Dictionary is a special dynamic-array class and is not part of the Unity API

specifically, but a part of the Microsoft .NET Framework. Unity allows us to make use of these .NET

classes through a cross-platform implementation known as Mono (www.mono-project.com/Main_Page).

This framework is used by Unity “under the hood.” The Dictionary class works like a key-value

database. Take a look at Figure 3-6 to see how it relates to the NotificationsManager class.

Figure 3-6. Example structure of a Dictionary for the NotificationsManager class. Lists of Listeners are organized and searchable

by Event Type

A great feature of the Dictionary is its searchable nature. Not only can you keep complete lists of

listeners organized by event type, but you can throw an event type at the Dictionary and have it give

you back the complete list of associated listeners, as we’ll see. Let’s start by declaring a Dictionary

for storing events and listeners (see Listing 3-7).

Listing 3-7. Adding a Dictionary of Listeners to the NotificationsManager

01 using UnityEngine;
02 using System.Collections;
03 using System.Collections.Generic;
04
05 public class NotificationsManager: MonoBehaviour
06 {
07 //Internal reference to all listeners for notifications
08 private Dictionary<string, List<Component>> Listeners = new Dictionary<string,
 List<Component>>();
09 }

http://www.mono-project.com/Main_Page

95CHAPTER 3: Event Handling

The declaration itself occurs at line 08 and makes use of Generic (or Template) classes

(further considered in the next section). In essence, this line creates a Dictionary of events and

listeners. The key values (event types) are specified as string elements—representing human-readable

names of events we’ll use (such as OnHealthChange), and the listeners themselves are specified as a list

of components, using the .NET List class. All components associated with an event will be notified

when the event happens through function calls.

Generic Classes and C#
In the previous section, we added a two-dimensional dynamic array member to the

NotificationsManager to act as an organized and searchable collection of Event and Listener

objects. This was implemented on line 08 of Listing 3-7, using the Dictionary and List classes from

the .NET Framework. In declaring both these classes in just one line, we relied on the concept of

Generic (or Template) classes. Let’s discuss these further here for clarity.

If you go online and examine the Microsoft documentation for the List class at

http://msdn.microsoft.com/en-us/library/6sh2ey19%28v=vs.110%29.aspx, you’ll see from the title

section that List is written as List<T>. Notice the <T> post-fix in that title. What does that mean?

In short, the post-fix <T>, when applied to a class, means the class is not strictly typed, and instead

uses Generics, which are a loose, stand-in data type that mean whatever you want them to mean. It

means the List class is not restricted to being a list of integers, or a list of strings, or a list of chars,

or a list of components. It can be any of these if you want it to be, as well as any other data type you

may want it to be. Consequently, a list of integers can be made with

List<int> MyIntegers = new List<int>();

And a list of strings with

List<string> MyStrings = new List<string>();

And a list of components with

List<Component> MyStrings = new List< Component>();

This means that the first element in the list, at List[0], will be an integer for integer lists, a string for

string lists, and so on. This powerful data-type versatility that comes from using Generics is not just

restricted to the .NET List class or to the .NET Framework itself. It is a C# language feature. The

Dictionary class also uses Generics. Let’s look at line 08 from Listing 3-7 again.

private Dictionary<string, List<Component>> Listeners = new Dictionary<string, List<Component>>();

Note To use the Dictionary class, as well as the List class, we must include the

System.Collections.Generic namespace (see line 03).

More information on the Dictionary class can be found online at

http://msdn.microsoft.com/en-us/library/xfhwa508%28v=vs.110%29.aspx.

Information on the List class can be found at

http://msdn.microsoft.com/en-us/library/6sh2ey19%28v=vs.110%29.aspx.

http://msdn.microsoft.com/en-us/library/6sh2ey19%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/xfhwa508%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/6sh2ey19%28v=vs.110%29.aspx

96 CHAPTER 3: Event Handling

The Dictionary has two “dimensions,” based on key-value pairs: Dictionary<TKey, TValue>. For

the NotificationsManager, I’ve set the first dimension to be a list of strings (for Event Type names),

and the second as List<Component> (for Listener objects). MonoBehaviour derived components

ultimately descend from type Component. I could, of course, have chosen different data types if

I’d wanted, since the Dictionary class uses Generics. However, these two types, strings and

List<Component>, will suit our needs, as later sections will show. By using these two types, we can

access all listeners as a list for any event of name N, with the following code:

//N is an event name: such as "OnHealthChange" or "OnLevelComplete"
List MyListenersList = Listeners[N];

Registering As a Listener
So the NotificationsManager now has a private Dictionary member, which makes use of Generic

types, and this allows us to maintain a searchable list of potential listeners for events, and the

size of the list can grow and shrink over time. Each listener in the list is specified as being of type

Component, but thanks to class inheritance and polymorphism, it can really be of any type descended

from Component, including MonoBehaviour. For more information on polymorphism, see Chapter 10.

In essence, this means our list of listeners can be a wide mix of different types. In this section, we’ll

add functionality to the NotificationsManager that lets us add a new Listener to the list. If an object

expects to be notified about any event, then it must previously have registered itself as a Listener

with the NotificationsManager. When an object registers itself as a Listener, it’s effectively saying,

“Hey, NotificationsManager. I want you to tell me about every occurrence of event X, as and when

it happens!” To achieve this functionality, a new public method AddListener can be added to the

NotificationsManager (see Listing 3-8).

Listing 3-8. Adding Listeners to the NotificationsManager

01 //Function to add a listener for an notification to the listeners list
02 public void AddListener(Component Listener string NotificationName)
03 {
04 //Add listener to dictionary
05 if(!Listeners.ContainsKey(NotificationName))
06 Listeners.Add (NotificationName, new List<Component>());
07
08 //Add object to listener list for this notification
09 Listeners[NotificationName].Add(Listener);
10 }

The AddListener method accepts two arguments: namely, Sender and NotificationName. The Sender

is a Component reference to the object that should become the registered listener. This is the object

that must be notified by the NotificationsManager, if and when the event occurs. NotificationName

is a string indicating the custom event type for which the Sender is listening. This is a user-defined

string naming the events for our game.

97CHAPTER 3: Event Handling

This method is short but powerful. It can be broken into two main stages.

1. Lines 04–06. First, the function searches through all key values (event

types) in the Dictionary, if there are any. The argument NotificationName

specifies the specific event for which to listen for this Listener, and line 05

calls the method Dictionary.ContainsKey to see if this event type already

has an entry in the Dictionary. It will have an entry if there’s been a previous

call to NotificationsManager.AddListener, listening for the same event.

Otherwise, an entry for the event will not be present. If there’s no existing

entry (no matching key) for the event in the Dictionary (line 06), then a new

entry is created using the Listeners.Add method, and a new Listener list is

instantiated (the value), which will hold all listeners for this event.

2. Line 09. If there is an existing entry (a matching key) in the Dictionary for the

event, then there will also be a valid and associated Value object. That is,

a List<Component> object, representing the complete list of listeners for this

event. If such a list exists, we don’t need to create a new one—we simply

need to add the argument Sender to the end of the existing list, as it becomes

an additional listener for the event.

So, how would a potential Listener object use the AddListener function in practice to register

itself as a Listener for an event with the NotificationsManager? In essence, any script derived

from Component or MonoBehaviour would register itself, as shown in Listing 3-9. Later code

samples in this chapter, and in the book, will demonstrate in more depth how to work with the

NotificationsManager. We’ll be seeing this class in action a lot!

Listing 3-9. Sample Class Registering Itself As a Listener for Event Notifications

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyCustomClass : MonoBehaviour
05 {
06 //Assign this object an instance of the NotificationsManager
07 public NotificationsManager NM = null;
08
09 void Start()
10 {
11 //Add me as a listener for a Custom Event
12 NM.AddListener(this, "EventToListenFor");
13 }
14

Note Lines 05 and 06 of Listing 3-8 check the Dictionary for a valid entry, and then retrieves the value of

that entry. However, you can also achieve this same process in just one call using the TryGetValue method

(see http://msdn.microsoft.com/en-us/library/bb347013%28v=vs.110%29.aspx).

http://msdn.microsoft.com/en-us/library/bb347013%28v=vs.110%29.aspx

98 CHAPTER 3: Event Handling

15 //Function name should match event name
16 //Function will be called by the NotificationsManager for every event occurence
17 void EventToListenFor()
18 {
19 //Enters here when event happens
20 }
21 }

The hypothetical class MyCustomClass demonstrates how a GameObject might interact

with an instance of the NotificationsManager. It uses the Start function to register with the

NotificationsManager as a Listener for a custom event (note: a class only needs to register for an

event once). And it also implements an additional method whose name matches the event to listen

for. This event will be called automatically by the NotificationsManager every time the event

occurs—this calling behavior is still added to NotificationsManager. See the next section!

Posting Notifications
The reason an object registers itself as a listener for an event in the first place is to receive

notifications when the event actually happens. So far, however, the NotificationsManager only

implements the AddListener function, which just builds a list of listeners. The class doesn’t (yet)

notify those listeners when events happen. This posting behavior should be implemented now,

through the NotificationsManager.PostNotification method. This method should be called by

any and all classes that cause or detect events. Effectively, these classes say “Ah ha! An event has

happened. I detected it. So now, I’ll tell the NotificationsManager. He’ll know what to do. He’ll pass

on this notification to all registered listeners for this event.” Take a look at Listing 3-10.

Listing 3-10. Posting Notifications to the NotificationsManager

01 //Function to post a notification to a listener
02 public void PostNotification(ComponentListener, string NotificationName)
03 {
04 //If no key in dictionary exists, then exit
05 if(!Listeners.ContainsKey(NotificationName))
06 return;
07
08 //Else post notification to all matching listeners
09 foreach(Component Listener in Listeners[NotificationName])
10 Listener.SendMessage(NotificationName, Listener,

SendMessageOptions.DontRequireReceiver);
11 }

This is where the “magic” really happens for this class. The following points break it down.

1. Line 02. The PostNotification function accepts two arguments: Sender

and NotificationName. The Sender argument refers to the component

or object that first detected or caused the event, and that notifies the

NotificationsManager. In other words, this argument will be a reference to

the object that invokes or calls the NotificationsManager.PosNotification

method. The NotificationsName argument is a user-defined string indicating

the event that occurred.

99CHAPTER 3: Event Handling

2. Lines 05 and 06. Here, PostNotification searches the Listener Dictionary

keys for a matching event to see whether there are any listeners registered

for this event. If there’s no matching key (event) in the dictionary, then this

event has no registered listeners. Therefore, PostNotification can exit

immediately, as there’s nothing further to do.

3. Lines 08–10. PostNotification uses a C# ForEach loop to iterate

through all registered listeners for this event. Notice that the event

element in the Dictionary is accessed using the standard C# array syntax:

Listeners[NotificationName]. For each registered listener, the SendMessage

function is called to notify the object of the event occurrence. This is the

crucial line, notifying an object of an event. The SendMessage function is

inherited from the Component object and is a part of the Unity API. It’s an

important method because it allows you to call any function on an active

object through its Component interface, simply by referring to the function

name as a string argument. You don’t need to know about the function’s

return type or even its argument list. You just need to know the function’s

name, and Unity does the rest to make the function call possible. The next

section considers SendMessage in more detail.

SendMessage and BroadcastMessage
When working in Unity, and with the component-based paradigm, (or with entity-based

programming, as it’s sometimes called), the chances are high that’ll you be creating a lot of C# script

files and adding them to your game objects as components. The components you create, which

are classes, will be your own custom types, typically derived from MonoBehaviour, or from other

descendent classes. As such, your classes will support a range of different variables and functions

to define their own behavior, making each class specific and unique. This is to be expected.

However, this raises a problem in C#, which is a strictly typed language. Specifically, there are often

times when you’ll want to work with many game objects together, invoking functions and behavior

on their components without having to know or worry about their specific data type and interface.

For example, due to a destructive explosion event in your game, you may want to destroy a batch

of different but nearby objects clustered together in the scene, such as enemies, power-ups, props,

and maybe even scenery parts.

Before destroying the objects, however, it’d be useful to call a function or event on them all, notifying

them about their impending doom, so each has the opportunity to respond appropriately. Maybe

some objects play a destruction sound, while others flash red. In these cases, you’ll want to call

a function on all the objects, but without having to know anything specific about their component

classes or data types. You simply want to invoke a function in all components across multiple

objects, whatever their data type and interface may be. The SendMessage and BroadcastMessage

functions both allow you to do this in different ways.

100 CHAPTER 3: Event Handling

	SendMessage. When you want to run a function of a specified name on all

components of a single GameObject, then you’ll need the SendMessage function.

The declaration for this function is given as follows (also see the Unity online

documentation at http://docs.unity3d.com/Documentation/ScriptReference/
Component.SendMessage.html):

void SendMessage(string methodName, SendMessageOptions options);

An example of its use is as follows:	
MyGameObject.SendMessage("Myfunction", SendMessageOptions. DontRequireReceiver);

This function accepts two arguments: 	 MethodName and Options. MethodName

refers to the function name to execute on all components of the specified

game object. The Options argument simply specifies what should happen if

a component is encountered that has no function with a matching name to

execute. Options can be either DontRequireReceiver or RequireReceiver.
DontRequireReceiver means that if a component is found with no matching

function to execute, then that component is simply ignored. RequireReceiver

means that if no function is found, an exception or error will be invoked

automatically by Unity and will be printed to the console.

	BroadcastMessage. Usually, SendMessage is all you need to invoke generic

behavior on a GameObject without knowing the implementation specifics

and interfaces of its components. But sometimes, you’ll need more than this.

Specifically, you’ll occasionally want to invoke functions and behavior on all

components across multiple GameObjects, and not just one object. If you

need multiple objects to simultaneously hide, show, die, move, explode,

change color, or do something else, then BroadcastMessage is your friend.

With BroadcastMessage, you simply send a message (invoke) a function

on the components of a single GameObject (as with SendMessage), but

BroadcastMessage will proceed to cascade that invocation downward to all child

GameObjects automatically in the scene hierarchy (see Figure 3-7).

Note Both the SendMessage and the BroadcastMessage functions are useful, but can cause

performance overhead when used extensively in frame-based functions, such as Update. For this reason,

use them judiciously and in a way that works well with your game. If you find their use to be generally too

costly for your game, then consider implementing an event system using C# interfaces. This subject will be

explored in brief in the final chapter.

http://docs.unity3d.com/Documentation/

101CHAPTER 3: Event Handling

Removing Listeners
The NotificationsManager, with the help of AddListener and PostNotification, can now build a list of

registered listeners for events, and further notify those listeners when their events happen. But should

we do if a Listener no longer wants to be notified about an event? What if the Listener wants to

unregister itself as a listener, removing itself from the Dictionary entirely? Right now the Notifications

Manager doesn’t support this behavior. But we can easily add support for it. Consider Listing 3-11.

Listing 3-11. Removing a Listener from the Dictionary

01 //Function to remove a listener for a notification
02 public void RemoveListener(Component Sender, string NotificationName)
03 {
04 //If no key in dictionary exists, then exit
05 if(!Listeners.ContainsKey(NotificationName))
06 return;
07

Figure 3-7. BroadcastMessage works like SendMessage, except it cascades function calls downward through the GameObject

hierarchy, rather than applying to only one GameObject

Note If, after reading this section, you still don’t feel comfortable or familiar using SendMessage and

BroadcastMessage, then don’t worry: both SendMessage and BroadcastMessage will be used

extensively in this book. We’ll get plenty of practice using them!

SendMessage and BroadcastMessage work for both the Component and GameObject classes. When

called on GameObjects, SendMessage invokes a named function on all attached Components. For single

Components, SendMessage invokes a named function on only the specified Component.

102 CHAPTER 3: Event Handling

08 //Cycle through listeners and identify component, and then remove
09 for(int i = Listeners[NotificationName].Count-1; i>=0; i--)
10 {
11 //Check instance ID
12 if(Listeners[NotificationName][i].GetInstanceID() == Sender.GetInstanceID())
13 Listeners[NotificationName].RemoveAt(i); //Matched. Remove from list
14 }
15 }

The RemoveListener function allows the object Sender to remove itself from the Listener list for

the registered event NotificationName. Notice that this function will not unregister the object as a

Listener for all event types, but only for the event type it specifies. The removal process begins in

line 09, with a For loop, and terminates at line 14.

Take care about the deletion of objects from a list during a loop. The loop in line 09 decrements

backward through the list rather than increments forward, because as items are deleted, the list

length or size reduces each time, which can invalidate the iterator I, if it increments.

Removing Redundancies
The RemoveListener method is useful in cases where an object explicitly removes itself as a Listener

from the Dictionary. This is a respectful and tidy way to work, whenever an object no longer wants

event notifications. But the possibility remains that a valid Listener object could be deleted from the

scene without ever calling RemoveListener to remove itself from the Listener Dictionary. If that were

to happen, the associated entries in the Dictionary for that object would remain intact but become

null references and thus be redundant. This could later cause exceptions and errors when methods,

such as PostNotification, iterate through all associated listeners, calling SendMessage. It would be

problematic because we cannot legitimately call SendMessage on null references, since no object

exists to support the function call. For this reason, we’ll need to add a new method, which can be

called to cycle through all listeners for all events, and to remove any redundancies if they are found

(see Listing 3-12).

Listing 3-12. Removing All Redundancies from a Dictionary

01 //--
02 //Function to remove redundant listeners - deleted and removed listeners
03 public void RemoveRedundancies()
04 {
05 //Create new dictionary
06 Dictionary<string, List<Component>> TmpListeners = new Dictionary<string,

List<Component>>();
07
08 //Cycle through all dictionary entries
09 foreach(KeyValuePair<string, List<Component>> Item in Listeners)
10 {
11 //Cycle through all listener objects in list, remove null objects
12 for(int i = Item.Value.Count-1; i>=0; i--)
13 {
14 //If null, then remove item

103CHAPTER 3: Event Handling

15 if(Item.Value[i] == null)
16 Item.Value.RemoveAt(i);
17 }
18
19 //If items remain in list for this notification, then add this to tmp dictionary
20 if(Item.Value.Count > 0)
21 TmpListeners.Add (Item.Key, Item.Value);
22 }
23
24 //Replace listeners object with new, optimized dictionary
25 Listeners = TmpListeners;
26 }

In essence, the RemoveRedundancies method cycles through every listener for every event type, and

removes any null references where found. Then it regenerates a new Dictionary containing only the

valid entries.

Completing NotificationsManager
We’ve now seen the core parts of the NotificationsManager—the things that make it work and

be what it is. Critically, this includes the AddListener, PostNotification, RemoveListener, and

RemoveRedundancies methods. Together, these constitute the backbone or infrastructure of the

event-handling system. With just these methods, we can receive and send event notifications

to practically any kind of GameObject and Component in a Unity scene. Let’s see the

NotificationsManager class in full, leaving out no code, as shown in Listing 3-13. This class can also

be found in the book companion files, inside the Chapter03 folder.

Listing 3-13. The Completed NotificationsManager Class (NotificationsManager.cs)

01 //EVENTS MANAGER CLASS - for receiving notifications and notifying listeners
02 //--
03 using UnityEngine;
04 using System.Collections;
05 using System.Collections.Generic;
06 //--
07 public class NotificationsManager : MonoBehaviour
08 {
09 //Private variables
10 //--
11 //Internal reference to all listeners for notifications
12 private Dictionary<string, List<Component>> Listeners = new Dictionary<string,

List<Component>>();
13
14 //Methods
15 //--
16 //Function to add a listener for an notification to the listeners list
17 public void AddListener(Component Sender, string NotificationName)
18 {
19 //Add listener to dictionary

104 CHAPTER 3: Event Handling

20 if(!Listeners.ContainsKey(NotificationName))
21 Listeners.Add (NotificationName, new List<Component>());
22
23 //Add object to listener list for this notification
24 Listeners[NotificationName].Add(Sender);
25 }
26 //--
27 //Function to remove a listener for a notification
28 public void RemoveListener(Component Sender, string NotificationName)
29 {
30 //If no key in dictionary exists, then exit
31 if(!Listeners.ContainsKey(NotificationName))
32 return;
33
34 //Cycle through listeners and identify component, and then remove
35 for(int i = Listeners[NotificationName].Count-1; i>=0; i--)
36 {
37 //Check instance ID
38 if(Listeners[NotificationName][i].GetInstanceID() == Sender.

GetInstanceID())
39 Listeners[NotificationName].RemoveAt(i); //Matched. Remove from

list
40 }
41 }
42 //--
43 //Function to post a notification to a listener
44 public void PostNotification(Component Sender, string NotificationName)
45 {
46 //If no key in dictionary exists, then exit
47 if(!Listeners.ContainsKey(NotificationName))
48 return;
49
50 //Else post notification to all matching listeners
51 foreach(Component Listener in Listeners[NotificationName])
52 Listener.SendMessage(NotificationName, Sender, SendMessageOptions.

DontRequireReceiver);
53 }
54 //--
55 //Function to clear all listeners
56 public void ClearListeners()
57 {
58 //Removes all listeners
59 Listeners.Clear();
60 }
61 //--
62 //Function to remove redundant listeners - deleted and removed listeners
63 public void RemoveRedundancies()
64 {
65 //Create new dictionary
66 Dictionary<string, List<Component>> TmpListeners = new Dictionary<string,

List<Component>>();
67

105CHAPTER 3: Event Handling

68 //Cycle through all dictionary entries
69 foreach(KeyValuePair<string, List<Component>> Item in Listeners)
70 {
71 //Cycle through all listener objects in list, remove null objects
72 for(int i = Item.Value.Count-1; i>=0; i--)
73 {
74 //If null, then remove item
75 if(Item.Value[i] == null)
76 Item.Value.RemoveAt(i);
77 }
78
79 //If items remain in list for this notification, then add this to tmp

dictionary
80 if(Item.Value.Count > 0)
81 TmpListeners.Add (Item.Key, Item.Value);
82 }
83
84 //Replace listeners object with new, optimized dictionary
85 Listeners = TmpListeners;
86 }
87 //--
88 //Called when a new level is loaded; remove redundant entries from dictionary; in case

left-over from previous scene
89 void OnLevelWasLoaded()
90 {
91 //Clear redundancies
92 RemoveRedundancies();
93 }
94 //--
95 }

Working with the NotificationsManager
So how does the NotificationsManager work in practice? Practically every subsequent chapter in

this book will use it, so we’ll see plenty of examples of the class at work. However, to distill the

basics into a simple project and to put things into perspective, let’s create a sample application here

that uses the NotificationsManager directly. The steps for creating this project follow.

First, create a new Unity project, if you’ve not already done so. The project name and import

packages are not critical in themselves—since we’re simply building a test-project to try out the

NotificationsManager class. Be sure to the save the default autogenerated scene (I’ve named mine

TestingNotifications.scene), and then import the NotificationsManager.cs C# file from Windows

Explorer or Mac Finder into an appropriately named folder inside the Unity Project panel, such as

Scripts (see Figure 3-8).

106 CHAPTER 3: Event Handling

As mentioned in earlier sections, the NotificationsManager should be a Singleton object, meaning

there should be only one instance of it in memory at any one time. That instance should last

throughout the duration of the scene and beyond, if there are multiple scenes. The details of

creating and accessing Singleton objects globally are considered in depth in the next chapter.

Here we’ll simply use a more informal, make-shift Singleton object. Just drag and drop the

NotificationsManager onto the Camera object in the scene (or onto an empty game object) to

instantiate the class as a Component. Since we know that NotificationsManager should be a

Singleton, then we’ll simply remember that our scene already has an instance of this class and that

we need to create no more instances (see Figure 3-9).

Figure 3-8. Importing NotificationsManager.cs into the Unity project. Remember: get into the habit of using meaningful folder

names, to bring organization to your assets

107CHAPTER 3: Event Handling

Figure 3-9. The NotificationsManager should be a Singleton object; there should be one instance of it in the scene

For this sample application, we’ll set up a trivial scenario. Specifically, we’ll create two additional

GameObjects in the scene. One object will be responsible for detecting user input, such as keyboard

button presses, and for notifying the NotificationsManager when such presses happen. The other

object will print a console message, whenever it receives a notification about keyboard input from

the NotificationsManager. Let’s start by creating two additional GameObjects: namely, obj_Poster

and obj_Listener (see Figure 3-10).

108 CHAPTER 3: Event Handling

To detect live keyboard input and to post appropriate notifications at the NotificationsManager, we’ll

need to create a new script file in the project. This will be attached to obj_Poster. See Listing 3-14

for the code I’m using. Drag and drop this script file into the obj_Poster to add it as a component.

Listing 3-14. Detecting Keyboard Input and Posting Notifications (Poster.cs)

01 using UnityEngine;
02 using System.Collections;
03
04 public class Poster : MonoBehaviour
05 {
06 //Reference to gloabl Notifications Manager
07 public NotificationsManager Notifications = null;
08
09 // Update is called once per frame
10 void Update ()
11 {
12 //Check for keyboard input
13 if(Input.anyKeyDown && Notifications != null)
14 Notifications.PostNotification(this, "OnKeyboardInput");
15 }
16 }

Figure 3-10. Creating two additional objects in the scene to test the NotificationsManager

109CHAPTER 3: Event Handling

The Poster class features a public member variable Notifications, which keeps a reference to the

NotificationsManager object in memory. By default, this variable is assigned and null. We should

assign this variable a value directly from the Unity Object Inspector. To do this, simply drag and drop

the Camera object (or Empty object), with the NotificationsManager component attached, from the

Hierarchy panel and into the Notifications slot in the Object Inspector, when the obj_Poster object

is selected. This completes the assignment (see Figure 3-11). Notice that Unity is smart enough

to detect which component on the source GameObject should be assigned to the Notifications

variable in the Object Inspector.

Figure 3-11. Assigning the NotificationsManager instance to the Notifications variable of class Poster, using the Object Inspector

Note For more information on the Unity Input class, see the online documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Input.html.

We’ll also need to create an additional script for the Listener object, which should register with the

NotificationsManager for keyboard events, and then respond to them when they occur. The Listener

script can be seen in Listing 3-15.

Listing 3-15. Responding to Keyboard Events with a Listener (Listener.cs)

01 using UnityEngine;
02 using System.Collections;
03
04 public class Listener : MonoBehaviour
05 {
06 //Reference to gloabl Notifications Manager
07 public NotificationsManager Notifications = null;
08

http://docs.unity3d.com/Documentation/ScriptReference/Input.html

110 CHAPTER 3: Event Handling

09 // Use this for initialization
10 void Start ()
11 {
12 //Register this object as a listener for keyboard notifications
13 if(Notifications!=null)
14 Notifications.AddListener(this, "OnKeyboardInput");
15 }
16
17 //This function will be called by the NotificationsManager when keyboard events occur
18 public void OnKeyboardInput(Component Sender)
19 {
20 //Print to console
21 Debug.Log("Keyboard Event Occurred");
22 }
23 }

Be sure to drag and drop the Listener.cs file onto the Listener object in the scene, and then assign

the public Notifications member in the Object Inspector to the NotificationsManager component,

as we did for the Poster object. Notice in Listing 3-15 that a correspondence exists between the two

classes, Poster and Listener, regarding the event name as a string. The Poster posts notifications

for event OnKeyboardInput, and the Listener registers for the same event, as well as implements a

function of that name, which will be invoked by the NotificationsManager using the SendMessage API

function (see Figure 3-12).

Figure 3-12. Remember to assign the Notifications member of the Listener to the single instance of NotificationsManager in

the scene

111CHAPTER 3: Event Handling

Figure 3-13. The NotificationsManager at work, using the Listener and Poster sample classes

Once the two minor classes, Poster and Listener, are configured in the project, the

NotificationsManager can be used as intended. Simply play the scene and press any key on the

keyboard. When this happens, the Poster object notifies the NotificationsManager, which in turns

notifies the one and only listener for this event (see Figure 3-13). You could, of course, add more

listener instances to the scene, and the NotificationsManager would update those objects, too! Sure,

it’s a simple setup in this isolated case, but it represents a powerful mechanic that works for any

event we can imagine, and it’ll become indispensable to us as we progress further with CMOD.

Conclusion
In this chapter, we established an abstract but highly important starting point for CMOD in the form

of a NotificationsManager class. This class is general in the ultimate sense that it stands apart from

any particular game project, and has wider relevance to practically every game project imaginable,

including CMOD. Its purpose is to centrally receive a single notification from any object in a

Unity scene that detects and causes events. And then, having received that notification, it should

immediately go on to dispatch it to any and all objects that have registered an interest in the event—

these objects being referred to as Listeners. Don’t be fooled by the simplicity and “shortness” of this

class. As we’ll see, it is powerful! At this point, you should be able to do the following:

Create C# script files and define custom behavior	
Understand the problems of events and event handling, as well as the need for 	
streamlining and managing events

Understand how the NotificationsManager works, and its relationship to 	
Notifications and Listeners

112 CHAPTER 3: Event Handling

Know what a Singleton object is and why it is important	
Use the Mono implementation of .NET classes, such as List and Dictionary	
Understand the advantages and disadvantages of dynamic arrays	
Understand the purpose of Generic classes in C#	
Invoke specified functions on GameObjects and Components using 	
SendMessage and BroadcastMessage

Implement a NotificationsManager, complete with Listener and Poster 	
functionality

Understand redundancies and null references	
Use the NotificationsManager in your own projects	

113

Chapter 4
Power-Ups and Singletons

CMOD will feature a total of four different power-up types, scattered around the level for collection.

First, the game-critical power-up of Cash (see Figure 4-1). Each level features multiple Cash

Power-Ups, and when all of these are collected without the Player dying, the level is classified

as complete. Second, a weapon-upgrade power-up that equips the Player with the gun weapon.

Third, an ammo-restore power-up to replenish the gun ammo back to maximum. And fourth, a

health-restore power-up to restore Player health back to maximum. All four of these power-ups

will be collected and applied when the Player collides with (or walks into) them. To implement

this behavior efficiently and to integrate it with the NotificationsManager (coded in the previous

chapter), we’ll make use of a very powerful type of C# object, known as a Singleton. This object

was discussed briefly in the previous chapter, but here we’ll examine it in more detail. So let’s get

started at creating power-up objects for CMOD!

114 CHAPTER 4: Power-Ups and Singletons

Creating the Cash Power-Up
The first power-up to address is perhaps the most significant in terms of general game-mechanics,

namely the Cash Power-Up. The Cash Power-Up is the most significant because without this power-up,

the player can’t complete the game. The aim of the player in any level of CMOD is to explore the

environment, collecting all Cash Power-Ups. When all Cash Power-Ups are collected, the level

is completed. Like all power-ups in CMOD, the Cash Power-Up will be sprite based. That is, its

appearance and form in the level will be based on a sprite from the main atlas texture, as opposed

to a “true” 3D mesh. As with the environment pieces configured in Chapter 2, we could make the

power-up by simply dragging and dropping sprite instances into the scene, one sprite for each

power-up instance, and then customize each one with scripted components, one at a time. But an

easier way is simply to create one power-up instance, and then package it as a Prefab that we’ll

reuse as many times as we need. That’s the approach we’ll take here. So to start creating the Cash

Power-Up, open the main atlas texture for the game in the Project panel, and drag and drop the

Cash Power-Up sprite from the texture into the scene hierarchy. This instantiates one cash sprite in

the scene—ready for scripting. Notice in Figure 4-2 that I’ve applied some scaling to the sprite, to

better fit it into the level.

Figure 4-1. Cash Power-Ups (with a scale of 0.3039) prepared and added to the level in the Unity Editor. The power-ups will be

created as a Prefab objects, with scripts attached, for easy reuse

115CHAPTER 4: Power-Ups and Singletons

Figure 4-2. Instantiating the cash sprite in the scene using the atlas texture. Scaling has been applied to better fit the sprite in

the scene

Note Working with sprite objects from the atlas texture, such as the Cash Power-Up sprite, requires us to

use the Sprite Editor 2D feature, added in Unity 4.3. This tool was explored in Chapter 2, for creating sprite

objects. You can create the required sprites manually, but if you’re working along with each chapter, the book

companion files for this chapter feature a ready-made Unity project (Chapter4/Unity/Project_Start),

complete with all necessary sprites already configured for use.

Power-Ups and Billboards
If you add the Cash Power-Up sprite to the scene and then take a look at it in-game with a First

Person Controller, looking at the sprite from many possible angles, you’ll notice a problem, as seen

in Figure 4-3. Specifically, the Cash Power-Up looks like a cardboard cutout, completely flat. In fact,

it’s even possible to walk around the side of the power-up, catching it at an angle where it’s almost

lost from view entirely, because it has no thickness or depth. This is not a flaw or fault of the sprite

per se so much as it’s a consequence of the sprite’s 2D-ness. A sprite is supposed to be 2D. This

is usually not a problem for 2D games that have fixed orthographic cameras always focused on

one side or aspect of the sprite, but when you mix 2D and 3D together, as in CMOD, the flatness of

sprites can become troublesome in this way.

116 CHAPTER 4: Power-Ups and Singletons

One way to fix this is to code a Billboard. When you add any code to a sprite, forcing it to rotate

so that it always directly faces the camera as it moves around in the level, you create a Billboard.

In short, a Billboard refers to a sprite that’s always looking at the camera. It always rotates in

synch with the camera so that the camera sees the sprite head-on. This eliminates any distortion

and flatness arising from the camera seeing the sprite at other angles in perspective—because,

with Billboards, the camera can only ever see the sprite from one angle and one angle only. In this

section, then we’ll code a Billboard class that we’ll add to the Cash Power-Up (as well as all other

power-ups) to solve the problem of sprite flatness. Create a new C# script file and begin with an

empty class, which I’ve named Billboard. Then add this class as a component of the sprite object in

the scene (see Listing 4-1).

Listing 4-1. Billboard.cs: The Beginnings of a Billboard Class

using UnityEngine;
using System.Collections;

public class Billboard : MonoBehaviour
{
}

Figure 4-3. Sprite objects are 2D and have no thickness. Consequently, they look like cardboard cutouts

117CHAPTER 4: Power-Ups and Singletons

Billboards and Cached Transforms
The critical feature of Billboard functionality is that it rotates a sprite to face the camera.

Consequently, any Billboard class must access the Transform component of a GameObject on

every frame, to achieve a permanent state of object rotation using any of Transform’s members or

functions, such as Transform.rotation, or Transform.Rotate, or Transform.RotateAround. These

members and functions can be accessed easily for any component on a game GameObject by

referencing its internal property, known as transform (lowercase t). For example, you may access an

object’s Transform and translate it in world space with the following code in Listing 4-2.

Listing 4-2. Using the transform Property

void Update()
{
 //Sets the object’s world positon to 10, 10, 10
 transform.position = new Vector3(10, 10, 10);
}

Now, although the code in Listing 4-2 works and achieves its purpose, it can still be improved in terms

of performance and efficiency, albeit marginally so. The main problem with the code is that, during

Update, a reference to transform is being made, which is a C# property and not a member variable. This

means that every call to transform indirectly invokes a function (Property), which returns a reference

to the Transform component. transform does not, however, access an object’s Transform directly, as

a member variable would. Remember, C# properties were covered in depth in the previous chapter.

Because transform is a property, there is a small optimization we can perform, known as Cached

Transforms. Consider the refined Billboard class in Listing 4-3, which uses Cached Transforms.

Listing 4-3. The Billboard Class Prepared for Action with Cached Transforms

01 using UnityEngine;
02 using System.Collections;
03
04 public class Billboard : MonoBehaviour
05 {
06 private Transform ThisTransform = null;
07
08 // Use this for initialization
09 void Start ()
10 {
11 //Cache transform
12 ThisTransform = transform;
13 }
14 }

Listing 4-3 shows how, in just two lines of code, we can create a Cached Transform object.

In essence, using the Start event (at line 09), we store a direct and local reference to an object’s

Transform component with the private Transform member ThisTransform. ThisTransform is a

member variable and not a property, and gives us direct and immediate access to the transform

component. Consequently, by using ThisTransform instead of transform on Update functions, we

can reduce additional and unnecessary functional calls on every frame. This may initially seem a

118 CHAPTER 4: Power-Ups and Singletons

trivial optimization, hardly worth pursuing perhaps, but the aggregate improvements this can make

over time, across many possible transform calls, can be considerable. So I recommend using

Cached Transforms wherever possible; they’re quick and easy to implement. We’ll be using them

here, for creating Billboards.

Billboards and Rotation
For a sprite to truly act as a Billboard, it needs to continually rotate (around the Y axis) to face the

game camera, wherever it may be in the scene (see Figure 4-4). We don’t need to worry about

Z and X rotations for CMOD, since the player cannot crouch, jump, or roll over to see the sprite from

underneath or above. Using Cached Transforms, we can achieve this rotation in only a few lines of

code. (Listing 4-4 shows the complete Billboard class. Comments follow, and I recommend reading

the code sample through a few times—it uses many different concepts that we’ll explore.)

Figure 4-4. CMOD sprites will need to rotate around the Y axis (YAW)

Listing 4-4. Completing the Billboard Class

01 using UnityEngine;
02 using System.Collections;
03
04 public class Billboard : MonoBehaviour
05 {
06 private Transform ThisTransform = null;
07
08 // Use this for initialization
09 void Start ()
10 {
11 //Cache transform

119CHAPTER 4: Power-Ups and Singletons

12 ThisTransform = transform;
13 }
14
15 void LateUpdate()
16 {
17 //Billboard sprite
18 Vector3 LookAtDir = new Vector3 (Camera.main.transform.position.x - ThisTransform.

position.x, 0, Camera.main.transform.position.z - ThisTransform.position.z);
19 ThisTransform.rotation = Quaternion.LookRotation(-LookAtDir.normalized, Vector3.up);
20 }
21 }

	Line 15. The Billboard rotation code occurs inside LateUpdate and not Update.

Both events are called once each frame, so what’s the difference? In short,

LateUpdate is always called after Update. This is important, especially for

cameras or objects that track the movement of other objects. For the Billboard,

our sprite rotates based on camera movement. If we rotate inside Update, it’s

possible the Billboard Update will be called before the camera Update (that is,

before the camera is positioned and located physically in the game environment

for that frame). If that happens, then our Billboard rotation will be invalidated

because the camera will have moved since for that frame. If we use LateUpdate

however, all update and movement functionality for the camera will have

finalized before rotating the Billboard, allowing us use the latest camera position.

Note For more information on LateUpdate, see the online Unity documentation at

http://docs.unity3d.com/430/Documentation/ScriptReference/MonoBehaviour.

LateUpdate.html.

	Line 18. Here we use vector subtraction, subtracting the power-up position

(as a Vector3) from the camera position (as a Vector3) to produce a resultant

vector, expressing the difference between the two. This vector, in essence,

describes the direction in which the power-up would have to be looking to face

the camera. This line of code does not change the rotation of the sprite. It simply

calculates the direction in which the sprite should be looking.

Note For more information on vector arithmetic, consult the Unity documentation at

http://docs.unity3d.com/Documentation/Manual/UnderstandingVectorArithmetic.html.

http://docs.unity3d.com/430/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/430/Documentation/ScriptReference/MonoBehaviour.LateUpdate.html
http://docs.unity3d.com/Documentation/Manual/UnderstandingVectorArithmetic.html

120 CHAPTER 4: Power-Ups and Singletons

	Line 19. Here we actually set the sprite rotation based on the LookAtDir vector

calculated in the previous line. A quaternion structure is generated to describe

the rotation a sprite must go through to be looking in the desired direction.

Quaternions are specialized mathematical structures that describe orientation.

They are a set of numbers telling you which way an object is oriented in 3D space.

If you need to rotate or turn an object in Unity, or if you need to look at a specified

location, then you’ll almost always need to work with quaternions at some level.

Figure 4-5. Billboards always rotate to face the camera

Note Quaternions can seem intimidating to many because they’re surrounded by lots of mathematical jargon

and depend on many other concepts and ideas that are beyond the scope of this book. But don’t let them

intimidate you for this reason. If you’re new to quaternions, it can be helpful to approach them not with the

intention of understanding their inward workings, but with an acceptance that they are simply a tool to use.

Spend less time looking inside them, and more time looking at how to use them. However, this doesn’t mean that

developing a deeper understanding of their background and innards isn’t useful or worthwhile. It only means that

such knowledge isn’t essential to getting started at using them. More information on quaternions can be found at

http://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions.

Go ahead and attach the Billboard component script to the Cash Power-Up sprite in the scene.

When you do this, the sprite will now turn to face the camera as it moves during gameplay. In fact,

with this short script, you can turn any sprite into a Billboard (see Figure 4-5)!

http://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions

121CHAPTER 4: Power-Ups and Singletons

Billboards and Bobbing
We’re making good progress with the Cash Power-Up, but it still needs “something more” than just

the ability to act as a Billboard. To really “stand out” to the player as a collectible object, it needs to

move. True, the power-up technically moves already, as it always rotates to face the camera, but this

movement is practically imperceptible because it’s perfectly synchronized with the camera. So to

create perceptible movement, we’ll need to translate the power-up to move it. Specifically, we’ll add

a bobbing motion, making the power-up gently move up and then down in a loop (see Figure 4-6 to

see the planned motion).

Figure 4-6. Adding bobbing motion to the power-up to help it stand out as a collectible object

The act of vacillating continuously between two extremes, such as moving up and down repeatedly,

is termed PingPonging. To create a PingPong for object movement, then, we’ll need to create a

new C# class and component. I’ll call this class PingPongDistance, since it’ll move the power-up up

and down by a specified distance, back and forth. The development of this class will also introduce

two highly important concepts in Unity—namely, deltaTime and coroutines. Let’s start the class, as

shown in Listing 4-5.

Listing 4-5. PingPongDistance.cs: Starting a PingPong Class for Animating Power-Up Movement

01 using UnityEngine;
02 using System.Collections;
03
04 public class PingPongDistance : MonoBehaviour
05 {
06 private Transform ThisTransform = null;
07

122 CHAPTER 4: Power-Ups and Singletons

08 // Use this for initialization
09 void Start ()
10 {
11 //Cache transform
12 ThisTransform = transform;
13 }
14 }

Coroutines
Before proceeding with the power-up PingPong movement, we’ll take a detour into the world

of coroutines, which will come in useful for us soon. In Unity, coroutines act like threads or

asynchronous functions, if you’re familiar with those concepts. In short, typical functions in Unity

and C# act synchronously. This means that, when an event (like Start) calls a function in a class,

the function performs its behavior sequentially, line by line from top to bottom, and then finally

terminates at the end, returning a value. When the function returns, the calling event will resume

its execution at the next line. But coroutines don’t seem to act that way. They act like they are

asynchronous (although they are not truly so). When you call a coroutine, it starts execution and

seems to “run in the background” at the same time as other functions. With this ability comes great

power, as we’ll see. Consider the following Listing 4-6, which uses a coroutine; comments follow.

Listing 4-6. Sample Coroutine

01 using UnityEngine;
02 using System.Collections;
03
04 public class PrintHelloWorld : MonoBehaviour
05 {
06 // Use this for initialization
07 IEnumerator Start ()
08 {
09 //Start Coroutine
10 StartCoroutine(Counter());
11
12 //Has finished
13 Debug.Log ("Counter Finished");
14
15 yield break;
16 }
17
18 IEnumerator Counter()
19 {
20 for(int i=0; i<10; i++)
21 {
22 Debug.Log (i.ToString() + " Seconds have elapsed");
23 yield return new WaitForSeconds(1.0f);
24 }
25 }
26 }

123CHAPTER 4: Power-Ups and Singletons

Before reading the following comments, execute this code in Unity and look inside the Console

window to see what happens. The result is shown in Figure 4-7.

Figure 4-7. Using coroutines. Notice that the string “Counter Finished”, which occurs inside Start on a line after the function

Counter is called, is actually printed before the counter function completes!

	Lines 07 and 18. Both of these lines declare a coroutine. Notice that many

Unity events, like Start, can be declared as a coroutine. They need not always

return void. Coroutines are always declared with an IEnumerator return type,

and they always feature a yield statement somewhere in their body. Technically,

a function that returns a type of IEnumerator and has a yield statement in its

body is a coroutine. So in Listing 4-6, both Start and Counter are coroutines.

	Line 10. In this class, the Start coroutine is invoked automatically by Unity, just

as it invokes the normal Start event, but line 10 invokes a coroutine manually.

Notice that a coroutine cannot be called like a regular function. Instead, the

function StartCoroutine must be used to initiate the specified coroutine. If

you’ve actually tested and run this code, you’ll see from the output in the

Console window, and from Figure 4-7, that the Counter coroutine is executed,

but Start does not wait for it to finish before resuming execution on the next line

at line 13. Line 13 is executed, and “Counter Finished” is printed to the console

before the Counter coroutine is completed entirely. This demonstrates the

asynchronous behavior of coroutines.

124 CHAPTER 4: Power-Ups and Singletons

	Line 15. In the world of coroutines, yield break is equivalent to return null

in the world of functions. In other words, yield break terminates the coroutine

at that line, and any subsequent lines (if there are any) will not be executed.

There’s also another kind of yield statement, which is yield return null. This

terminates execution of the coroutine for the current frame, but the coroutine will

resume at the next line on the next frame. We’ll see this form of yield in action

shortly when creating the bobbing motion for our Cash Power-Up object.

	Line 23. This yield WaitForSeconds statement works like a Sleep function. In

Listing 4-6, yield WaitForSeconds is used to suspend execution of the coroutine

for 1 second before resuming on the next line. Since this statement is called

inside a For loop, it executes once on each iteration.

There’s another and interesting use of yield, however, which is not so widely documented. You may

be wondering how we could fix the “asynchronous problem” in Listing 4-6 so that line 13 was truly

executed after the Counter coroutine had completed entirely, and not sooner. To do that, consider

the revised code, as shown in Listing 4-7.

Listing 4-7. Waiting for a Coroutine to Complete

01 using UnityEngine;
02 using System.Collections;
03
04 public class PrintHelloWorld : MonoBehaviour
05 {
06 // Use this for initialization
07 IEnumerator Start ()
08 {
09 //Start Coroutine
10 yield return StartCoroutine(Counter());
11
12 //Has finished
13 Debug.Log ("Counter Finished");
14
15 yield break;
16 }
17
18 IEnumerator Counter()
19 {
20 for(int i=0; i<10; i++)
21 {
22 Debug.Log (i.ToString() + "Seconds have elapsed");
23 yield return new WaitForSeconds(1.0f);
24 }
25 }
26 }

In short, the yield statement can be used inside a coroutine (such as Start) to wait for the

termination of another coroutine (such as Counter). With this code, line 13 will not be executed until

the Counter coroutine has ended. Before moving on, I recommend playing around with coroutines.

They are powerful and we’ll put them to good use in the next section to create an endless PingPong

motion for power-ups.

125CHAPTER 4: Power-Ups and Singletons

Note For more information on coroutines, consult the Unity documentation at

http://docs.unity3d.com/Documentation/Manual/Coroutines.html.

Power-Up Motion with Coroutines and deltaTime
Listing 4-8 provides the complete class for PingPongDistance. And this class is also included in

the book companion files for this chapter at Chapter2/AssetsToImport. Rather than go into lengthy

descriptions here, let’s first see the code, and then I’ll offer comments.

Listing 4-8. PingPongDistance – Complete Class

01 using UnityEngine;
02 using System.Collections;
03 //--
04 public class PingPongDistance : MonoBehaviour
05 {
06 //Direction to move
07 public Vector3 MoveDir = Vector3.zero;
08
09 //Speed to move - units per second
10 public float Speed = 0.0f;
11
12 //Distance to travel in world units (before inverting direction and turning back)
13 public float TravelDistance = 0.0f;
14
15 //Cached Transform
16 private Transform ThisTransform = null;
17
18 //--
19 // Use this for initialization
20 IEnumerator Start ()
21 {
22 //Get cached transform
23 ThisTransform = transform;
24
25 //Loop forever
26 while(true)
27 {
28 //Invert direction
29 MoveDir = MoveDir * -1;
30
31 //Start movement
32 yield return StartCoroutine(Travel());
33 }
34 }
35 //--
36 //Travel full distance in direction, from current position
37 IEnumerator Travel()
38 {

http://docs.unity3d.com/Documentation/Manual/Coroutines.html

126 CHAPTER 4: Power-Ups and Singletons

39 //Distance travelled so far
40 float DistanceTravelled = 0;
41
42 //Move
43 while(DistanceTravelled < TravelDistance)
44 {
45 //Get new position based on speed and direction
46 Vector3 DistToTravel = MoveDir * Speed * Time.deltaTime;
47
48 //Update position
49 ThisTransform.position += DistToTravel;
50
51 //Update distance travelled so far
52 DistanceTravelled += DistToTravel.magnitude;
53
54 //Wait until next update
55 yield return null;
56 }
57 }
58 //--
59 }

	Lines 16 and 20. These should be familiar to us. In line 16 we declare a private

ThisTransform object to cache the GameObject transform, ready to use either

during coroutines or Update functions. In line 20, Start is declared as a coroutine

rather than a regular function since we’ll be waiting on Travel to complete in line

32. The Travel coroutine is used to move the power-up up and down.

	Lines 07 and 29. Line 07 declares a public Vector3 MoveDir, which should be

set for each GameObject in the Object Inspector. This vector represents the

starting direction in which an object should move for the specified distance

TravelDistance (declared in line 13) and at the specified Speed (declared in line

10). This vector should be in a normalized form. By normalized here, I mean

MoveDir is expected to use the values of 0 or 1 to indicate direction. Thus, if an

object should move upward on the Y axis, the MoveDir vector would be (0,1,0).

Movement on X would be (1,0,0), and on Z would be (0,0,1).

	Lines 26–32. Power-up objects should move up and down endlessly in a loop.

This is where that high-level functionality happens. If MoveDir begins with a

value of (0,1,0), then it’s value is inverted at line 29 to (0,-1,0), and the Travel

coroutine is called, to move the object downward at a specified speed and for a

specified distance. On reaching the destination, the Travel coroutine completes,

and MoveDir is inverted again. So (0,-1,0) becomes (0,1,0), and then the object

moves up, and so on. Thus, through repeated inversion, we achieve PingPong.

	Lines 37–55. The Travel coroutine is responsible moving the power-up object

from its current world space position, in the direction of MoveDir, at a specified

speed, and until the total distance traveled exceeds TravelDistance. This is

achieved especially with line 46, which calculates the amount to move in the

direction MoveDir for the current frame. To calculate this, a Unity API variable

Time.deltaTime is used. The next section discusses deltaTime further.

127CHAPTER 4: Power-Ups and Singletons

Exploring deltaTime
Every game relies either directly or indirectly on the concept of time to get its work done. If objects

move or animate or change, then time is necessarily involved since every change must occur at a

specified moment and at a specified speed. For an object to change, it must have been in a different

state at an earlier time; otherwise, no change could be said to have occurred now. Thus, to represent

any kind of change in-game, a concept and measure of time is needed. Measuring time has been

problematic in games, however, historically speaking. Many older games measured time in terms of

frames, but this resulted in performance inconsistency across hardware, because different computers

could sustain different frame rates, and at different times. The result was that no two users on different

computers could be guaranteed the same experience, even if they started playing the same game at

the same time. So nowadays, many games measure time in a hardware-independent way, namely in

terms of seconds. And Unity offers many such time-measuring features through the Time class.

Note For more information on the Time class, see the Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Time.html.

An important member variable of the Time class, which updates on each frame, is deltaTime. In

mathematics and science, as well as video games, the term delta typically means “change in” or

“difference.” Thus, deltaTime refers to time difference or change in time. Specifically, the variable

deltaTime expresses how much time (in seconds) has elapsed since the previous frame. For this

reason, because video games typically display many frames per second, this value will almost

always be a fractional value between 0 and 1, such as 0.03, or 0.5, or 0.111, and so forth. A value of

0.5 would mean that half a second has elapsed since the previous frame, and 1 would mean a whole

second, and 2 would mean 2 seconds, and so on. Normally, larger values such as 1, and 2, and 3

are indicative of lag and problems in your game, because the hardware is clearly unable to sustain

higher frame rates that would necessarily result in lower deltaTime values.

Note For more information on deltaTime, see the Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Time-deltaTime.html.

deltaTime is useful in Unity because it allows us to achieve frame-rate independence. Consider, for

example, a GameObject (such as a spaceship) that should travel in a straight line. Let’s say we want

to translate the spaceship on the X axis, over time, to produce movement. One way to implement

this behavior without deltaTime would be as shown in Listing 4-9.

Listing 4-9. Moving an Object Without deltaTime

01 void Update()
02 {
03 //Update spaceship position on x axis each frame
04 spaceship.position += new Vector3(5.0f,0,0);
05 }

http://docs.unity3d.com/Documentation/ScriptReference/Time.html
http://docs.unity3d.com/Documentation/ScriptReference/Time-deltaTime.html

128 CHAPTER 4: Power-Ups and Singletons

This code increments the X position of the Player spaceship on each frame by five units. Over time,

this will cause the spaceship to move. The problem, however, is that the speed of the spaceship

entirely depends on the frequency with which Update is called. The more frequently Update is called,

the faster the spaceship will move. Of course, we know in advance that Update is called on each and

every frame, but frame rates differ across computers and even on the same computer at different

times. For this reason, the code in Listing 4-9 will result in a spaceship that travels at different

speeds on different computers, and even at different times on the same computer. This might not

be a problem for us, if we don’t care about spaceship speed in any way. But typically, we do care

because we want to have some degree of control and understanding about the kind of experience

gamers will have when they play our game. Now, we can solve this problem using deltaTime. Let’s

see how. Consider the following code in Listing 4-10, which improves on Listing 4-9.

Listing 4-10. Moving an Object with deltaTime

01 using UnityEngine;
02 using System.Collections;
03 //--
04 public class Mover : MonoBehaviour
05 {
06 //Speed to move - units per second (5 units per second)
07 public float Speed = 5.0f;
08
09 //Cached Transform
10 private Transform ThisTransform = null;
11
12 //--
13 //Move spaceship
14 void Update()
15 {
16 //Update position
17 ThisTransform.position += new Vector3(Speed * Time.deltaTime, 0, 0);
18 }
19 //--
20 }

In Listing 4-10, the speed of the spaceship is defined in a ratio of units to seconds, namely world

units per second. Further, we know that deltaTime expresses time as a fraction, based on how much

time has elapsed since the previous frame. And lastly, we know that calculating the distance traveled

for an object can be expressed using this formula: Distance = Speed × Time. Therefore, Speed ×

deltaTime results in the amount of world units the spaceship should travel. This allows you to move

the spaceship not only a constant speed during gameplay, but a constant speed between different

computers. The lesson here, then, is for moving objects use deltaTime!

Completing Power-Up Bobbing
We’ve now seen deltaTime in action, for creating a sample case of a spaceship moving forward

along the X axis over time at a consistent speed. We’ve also seen in Listing 4-7 how deltaTime

can be applied to the PingPongDistance class to create motion for power-ups. This means we can

now move further with the Cash Power-Up. So, back in the Unity Editor, just drag and drop the

129CHAPTER 4: Power-Ups and Singletons

PingPongDistance script onto the power-up object, adding it as a component. I’ve positioned the

Cash Power-Up in the scene, and set values for the properties for PingPongDistance in the Object

Inspector. You may need to play around with these values if your level or power-up object differs

from mine (see Figure 4-8 for the values I’ve used).

Figure 4-8. Adding a PingPongDistance component to the Cash Power-Up, making it bob up and down. Notice the MoveDir vector

specified as (0, 1, 0) for the power-up move direction

Power-Up Collision
Things are looking good for the Cash Power-Up created so far. It exhibits Billboard functionality

using the Billboard class, and also bobs gently up and down to accentuate its collectability, thanks

to the PingPongDistance class. But all of these behaviors are essentially cosmetic features, and

none of them actually make the power-up collectible. To truly round-off and complete the power-up

object, we’ll want it to disappear from the level when collected by the player. And the player collects

the power-up simply by walking through it. That is, by colliding with it. Therefore, to implement

power-up collection behavior, we’ll need to work with Physics Colliders, to detect when the Player

controller intersects the power-up bounding volume. So, before getting started at implementing this,

make sure Collider Visibility is enabled for the Scene viewport, allowing us to see colliders when we

create them. To do this, click the Gizmo button from the Scene toolbar and enable the BoxCollider

check box, if it’s not enabled already (see Figure 4-9 to see how to do this).

130 CHAPTER 4: Power-Ups and Singletons

After Collider visibility is enabled, add a new BoxCollider component to the power-up object in the

scene. To do that, select the power-up object, and choose Component ➤ Physics ➤ Box Collider

from the main application menu. Once added, use the collider Size property, in the Object Inspector,

to size the collider, surrounding the power-up and leaving some margin of space around the fringes.

Be careful to give the collider some depth, too, even though the power-up object is really a flat

sprite. It’ll need depth for collisions to work properly (see Figure 4-10).

Figure 4-9. Enabling BoxCollider visibility in the Scene viewport. If disabled, no colliders will be visible

131CHAPTER 4: Power-Ups and Singletons

Now the object is almost configured for collision detection with the Player. There’s still one more

step. For this object, and all power-ups, we want Unity to notify us explicitly in the script as and

when collisions occur between the Player and Power-Ups, so we can respond appropriately, such as

by removing the power-up object from the scene and increasing the collected cash score. Right now,

Unity won’t notify us by default. But we can easily configure the collider to do so. Just enable the Is

Trigger check box from the Collider component in the Object Inspector. Enabling this will force Unity

to send an event notification (a function call) to all components on the object whenever a collision

occurs, if any (see Figure 4-11).

Figure 4-10. Adding a Physics Collider to the Cash Power-Up to detect collisions with the Player

Figure 4-11. Enable “Is Trigger” to receive collision notifications in the script when collisions happen

132 CHAPTER 4: Power-Ups and Singletons

Note More information on Unity colliders can be found at

http://docs.unity3d.com/Documentation/ScriptReference/Collider.html.

Handling Collision Events: Getting Started
By using the Collider component of an object as a trigger volume, Unity can send all components on

an object an event call for each and every unique collision, allowing us to code custom responses

to the events when they happen. For Player collisions with the Cash Power-Up, we’ll want to do the

following: first, increase the amount of cash collected in total for the Player; second, play a collection

sound; and third, remove the power-up from the scene so the Player cannot collect it more than

once. To handle this behavior, we’ll code a new class that I’ll call Powerup_Dollar. To implement this,

then, create a C# script file in the project named Powerup_Dollar.cs. Be sure to add this script as a

component of the Cash Power-Up in the scene. A good start for this class might look like Listing 4-11.

Listing 4-11. Powerup_Dollar.cs: Starting the Cash Power-Up Class

01 //---
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Powerup_Dollar : MonoBehaviour
06 {
07 //Amount of cash to give player
08 public float CashAmount = 100.0f;
09
10 //Audio Clip for this object
11 public AudioClip Clip = null;
12
13 //Audio Source for sound playback
14 private AudioSource SFX = null;
15 //--
16 }

	Lines 07-14. The Cash Power-Up declares three variables, of which one is

private. CashAmount is a float expressing how much cash should be awarded to

the player when the power-up is collected. This allows us to specify different

values for each power-up, if we need to. The Clip variable will specify which

audio file to play when the power-up is collected. In Chapter 2, audio assets

were imported into the project, and for this power-up I’ll be using the audio

file powerup_collect.wav. This file is included in the book companion files, but

you can use any audio file you want. Finally, the SFX variable refers to an Audio

Source component, the component to play the Clip audio file. This component

acts like a media player.

http://docs.unity3d.com/Documentation/ScriptReference/Collider.html

133CHAPTER 4: Power-Ups and Singletons

Collisions and Responses
Let’s move further with the Powerup_Dollar class to handle collision events. For Unity game objects

with Trigger components, the OnTriggerEnter event is fired for the object when either a RigidBody

object or another collider, such as the Player character, moves inside the trigger area (or volume).

The extents of the trigger are defined by the BoxCollider. There is also a partner OnTriggerExit event,

which is invoked when the collider leaves the trigger volume. However, in this book, we’ll only need to

deal with OnTriggerEnter. Listing 4-12 shows the almost complete Powerup_Dollar class (which can

be found in the chapter companion files in Chapter04/AssetsToImport/); comments follow.

Listing 4-12. Moving Forward with Powerup_Dollar.cs

01 //---
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Powerup_Dollar : MonoBehaviour
06 {
07 //Amount of cash to give player
08 public float CashAmount = 100.0f;
09
10 //Audio Clip for this object
11 public AudioClip Clip = null;
12
13 //Audio Source for sound playback
14 private AudioSource SFX = null;
15 //--
16 void Start()
17 {
18 //Find sound object in scene
19 GameObject SoundsObject = GameObject.FindGameObjectWithTag("sounds");
20
21 //If no sound object, then exit
22 if(SoundsObject == null) return;
23
24 //Get audio source component for sfx
25 SFX = SoundsObject.GetComponent<AudioSource>();
26 }
27 //--
28 //Event triggered when colliding with player
29 void OnTriggerEnter(Collider Other)
30 {
31 //Is colliding object a player? Cannot collide with enemies
32 if(!Other.CompareTag("player")) return;
33
34 //Play collection sound, if audio source is available
35 if(SFX){SFX.PlayOneShot(Clip, 1.0f);}
36
37 //Hide object from level so it cannot be collected more than once
38 gameObject.SetActive(false);
39

134 CHAPTER 4: Power-Ups and Singletons

40 //Get PlayerController object and update cash
41 PlayerController PC = Other.gameObject.GetComponent<PlayerController>();
42
43 //If there is a PC attached to colliding object, then update cash
44 if(PC) PC.Cash += CashAmount;
45 }
46 //--
47 }

Note I recommend taking a look at the FindGameObjectWithTag function on the Unity online

documentation. It can be really useful for retrieving references to objects at runtime by object

tags (see http://docs.unity3d.com/Documentation/ScriptReference/GameObject.

FindGameObjectsWithTag.html).

	Lines 29–32. The OnTriggerEnter function is inherited from Component, and is

executed automatically by Unity as an event, whenever a collision is detected

with the trigger. Here is where we should code a response to collision events.

The function argument Other is a reference to the object that is colliding with us,

and it’s an important parameter for validating a collision. The power-ups for this

game should be collected by the Player only, and not by wandering Enemies.

But since both the Player and the Enemies will have colliders, both of them will

be able to collide with, and possibly collect, the power-up—unless we validate

the Other object! This validation occurs in line 32, where we check to see if the

colliding object is marked with the "player" tag. If it’s not, then the event is

ignored. Consequently, for the collision functionality to work here, the Player

object must be marked with the tag "player".

Note More information on Unity trigger events can be found at http://docs.unity3d.com/

Documentation/ScriptReference/MonoBehaviour.OnTriggerEnter.html and

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.

OnTriggerExit.html.

	Lines 16–25. The Start event demonstrates an important and useful function

in Unity, namely GameObject.FindGameObjectWithTag. Using this function, the

purpose of Start is to search through all game objects in the scene, finding an

object with a tag of “sounds”, and then to retrieve a reference to its AudioSource

component, if it has one. This component will be used to play back any sounds

associated with this power-up when it’s collected. The success of this function

depends on there actually being an object in the scene that has a tag of

“sounds” and an AudioSource component. Thus, if there isn’t such an object,

be sure to add one. Thankfully, however, this power-up has been coded so

that if no such object is present, the power-up will simply not play a sound on

collection, as opposed to throwing an error or exception.

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.FindGameObjectsWithTag.html
http://docs.unity3d.com/Documentation/ScriptReference/GameObject.FindGameObjectsWithTag.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnTriggerEnter.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnTriggerEnter.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnTriggerExit.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnTriggerExit.html

135CHAPTER 4: Power-Ups and Singletons

	Line 38. Here the power-up is hidden (or removed) from the scene using the

SetActive function. SetActive does not technically delete or remove an object

from the scene, because any deactivated object can always be reactivated.

Objects can be deleted permanently with the function DestroyImmediate.

However, for performance reasons, I’ve avoided using that here. Instead, I’d

recommend getting into the habit of caching and batching your objects. That is,

create objects altogether in one large batch (such as a Scene Start), and then

just hide them when they’re not supposed to be in the scene, instead of creating

and destroying objects as and when required during gameplay.

	Lines 41–44. These lines retrieve a PlayerController component from the

colliding Player object, to increase the collected cash. The PlayerController

class hasn’t been created yet—it’ll be made in the next chapter. But that’s not

a critical issue, because for now you can comment out these lines until we

develop the class. The key issue to see is the OnTriggerEnter function will

increment the player’s collected cash.

Introducing the GameManager
The Powerup_Dollar class implements the event OnTriggerEnter to respond to player collisions. This

program structure and functionality works well insofar as it goes, but it really doesn’t go far enough.

While it’s useful for the Powerup_Dollar class to respond to collision events as it does, there may

potentially be other classes that’ll want to respond to and handle power-up collection. Perhaps,

right now, we cannot conceive clearly of what those classes might be and how they might work

exactly, but it’d be a good idea to structure our code now so that in the future, any other class has,

at least, the potential and opportunity to respond directly to power-up collection events, should

they need to. Thankfully, we already have the beginnings of a solution to this problem through the

NotificationsManager class, created in the previous chapter. This class allows an event-receiver,

such as Powerup_Dollar, to post event notifications to the NotificationsManager, which then relays

all notifications to all registered listener objects by way of function calls.

However, an important consideration arises here. Our CMOD project doesn’t yet have any valid

instance of the NotificationsManager attached to an object in the scene. This means our project has

no valid instance of NotificationsManager to receive or broadcast events, even though the script file

is in our Project panel. I’ve deliberately put off discussing NotificationsManager instantiation until

now. This is because the NotificationsManager is a managerial, overarching class that applies not to

any one particular instance of an object, but to all objects generally throughout the game. It needs

to receive and post event notifications between potentially all objects in scene and a game. This

general and overarching quality is also likely to be shared by a range of other managerial classes.

One particular class is the GameManager.

The GameManger is a special class in the sense that it’s the highest level class in a game. If we want

to restart or quit the game, then we’ll need a GameManager. If we want to save or load game states,

we’ll need a GameManager. And if we want an instance of NotificationsManager for handling events

throughout a game, then it’ll be a member instance of GameManager. In short, any high-level,

game-wide functionality that we’ll need should be implemented in GameManager. It’s effectively

the “boss” of our game’s logic. Given this, then, we’ll now start to implement GameManager, and in

doing this we’ll be able to handle game-wide events with NotificationsManager. So let’s get started

by creating a new C# script file GameManager.cs.

136 CHAPTER 4: Power-Ups and Singletons

GameManager and Singletons
The GameManager is a general, managerial and overarching class of special significance in practically

every game. It has the single duty of representing and coordinating all high-level functionality,

including game restarts, game exits, load-and-save states, game pauses, and more. It’s notable

here, too, that I’ve referred to GameManager in terms of “the GameManager” (singular)—as in the

one and only GameManager—as opposed to “a GameManager” (where the possibility of multiple

instances is admitted). This is for good reason because, in general, we’ll never need more than

one instance of GameManager throughout the duration of gameplay. The gamer can only play

one instance of our game at any time, and that active instance is represented entirely by a single

GameManager, which is created at game-start and is terminated at game-end.

Allowing for multiple GameManager instances would be confusing and game-breaking, since

multiple instances would necessarily conflict and fight for controlling the same game. Therefore, we

can safely establish here that not only will we never need more than one GameManager instance

at any one time, but there’s also good reason to create the class so that multiple instantiations of it

are not possible. This will be especially useful if other programmers should work on our code. This

kind of object, where only one instance can be made, is known as a Singleton. Classes designed

to produce Singleton objects are said to use the Singleton design pattern. Thus, our GameManager

object should be a Singleton. But how can we create such an object?

There are multiple solutions or methods for creating Singletons. The method illustrated here will be

through static members. Let’s see this process, step by step (see Listing 4-13).

Listing 4-13. Starting the Singleton Class

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class GameManager : MonoBehaviour
06 {
07 //Internal reference to single active instance of object - for singleton behaviour
08 private static GameManager instance = null;
09 }

Start by adding a private static member of type GameManager (line 08 in Listing 4-13). Being static,

the value of this member would be shared across all instances of GameManager. This variable will be

null if there’s no valid instance of GameManager active in the scene; otherwise, it’ll be a reference to a

previously declared instance of GameManager. Next, see Listing 4-14.

Listing 4-14. Expanding on the Singleton Class

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class GameManager : MonoBehaviour
06 {
07 //--
08 //C# property to retrieve currently active instance of object, if any

137CHAPTER 4: Power-Ups and Singletons

09 public static GameManager Instance
10 {
11 get
12 {
13 if (instance == null) instance = new GameObject ("GameManager").
 AddComponent<GameManager>(); //create game manager object if required
14 return instance;
15 }
16 }
17
18 //--
19 //Internal reference to single active instance of object - for singleton behaviour
20 private static GameManager instance = null;
21 }

Here we add a public and static C# property, called Instance. The name is not essential, but its

purpose is to return a reference to the active GameManager instance. If there is no currently active

instance at the time of the call, then one is created and a reference to that instance is returned. As

we’ll see, most other classes in our game will use this property to retrieve a reference to the active

GameManager instance whenever they need to access and invoke functions on the Game Manager.

Now consider Listing 4-15.

Listing 4-15. Completing the Singleton Class

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class GameManager : MonoBehaviour
06 {
07 //--
08 //C# property to retrieve currently active instance of object, if any
09 public static GameManager Instance
10 {
11 get
12 {
13 if (instance == null) instance = new GameObject ("GameManager").
 AddComponent<GameManager>(); //create game manager object if required
14 return instance;
15 }
16 }
17
18 //--
19 //Internal reference to single active instance of object - for singleton behaviour
20 private static GameManager instance = null;
21
22 //--
23 // Called before Start on object creation
24 void Awake ()
25 {
26 //Check if there is an existing instance of this object
27 if((instance) && (instance.GetInstanceID() != GetInstanceID()))

138 CHAPTER 4: Power-Ups and Singletons

28 DestroyImmediate(gameObject); //Delete duplicate
29 else
30 {
31 instance = this; //Make this object the only instance
32 DontDestroyOnLoad (gameObject); //Set as do not destroy
33 }
34 }
35 }

Figure 4-12. Adding the GameManager component as a Singleton to an empty GameObject

Note There are many ways to check for equality between objects, to determine if two references to an

object refer to one and the same object. You can use == equality, but I prefer Object.GetInstanceID.

The ID for each instance is guaranteed to be unique for a single session (see Unity documentation).

Finally, after Listing 4-15, the Singleton magic is completed, and we’re left with a Singleton object.

Listing 4-15 adds an Awake event, which is called for the instance automatically by Unity on object

creation (before the Start function). Inside this function we test the private static member instance

to see if an active instance of this object already exists, and if it does, we delete the current instance

(lines 27 and 28), since it must be a duplicate. Notice, in this case we don’t simply hide or deactivate

the object, as we did when hiding the cash power-up when collected in Listing 4-12. Here, we

really do delete the object, if required, using the API function DestroyImmediate, restricting the

active instance to just one. And that’s it! Here, we’ve created a singleton GameManager. To test,

I recommend adding this class as a component to an empty GameObject in the scene, and then

see what happens you try to instantiate more instances in script, using the new keyword or the

AddComponent function. It shouldn’t be possible, thanks to the Singleton functionality (see Figure 4-12).

139CHAPTER 4: Power-Ups and Singletons

GameManager and Event Handling
GameManager, right now, doesn’t implement any high-level functionality, such as Save-Game

and Restart-Game. It will do so later in this book. But for now, it just acts a Singleton, and that’s

fine. Often, while developing high-level classes like Game Managers and Notification Managers,

it’ll be necessary to jump back and forth between many classes, developing some parts sooner

and some later. This is normal and is usually required—and need not be any cause for concern or

the result of bad planning. Many classes implemented so far, such as the NotificationsManager

and PingPongDistance were sufficiently generic and “low-level” that they never depended on other

classes and implementations to achieve their own functionality. But we don’t have that luxury with

the GameManager. It’ll have to be an ongoing project throughout CMOD development. One feature,

however, that we should implement right away into GameManager because it affects most other

classes, is event-handling functionality. Most classes will need to post or receive events, and they’ll

do this via GameManager; let’s see how in Listing 4-16. This code contains three major additions

that make use of the NotificationsManager; comments follow.

Listing 4-16. Integration NotificationsManager into GameManager

01 //--
02 using UnityEngine;
03 using System.Collections;
04 [RequireComponent (typeof (NotificationsManager))] //Component for sending and receiving
 notifications
05 //--
06 public class GameManager : MonoBehaviour
07 {
08 //--
09 //C# property to retrieve currently active instance of object, if any
10 public static GameManager Instance
11 {
12 get
13 {
14 if (instance == null) instance = new GameObject ("GameManager").
 AddComponent<GameManager>(); //create game manager object if required
15 return instance;
16 }
17 }
18 //--
19 //C# property to retrieve notifications manager
20 public static NotificationsManager Notifications
21 {
22 get
23 {

Note For more information on AddComponent, see the online Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.AddComponent.html.

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.AddComponent.html

140 CHAPTER 4: Power-Ups and Singletons

24 if(notifications == null) notifications = instance.GetComponent
 <NotificationsManager>();
25 return notifications;
26 }
27 }
28 //--
29 //Internal reference to single active instance of object - for singleton behaviour
30 private static GameManager instance = null;
31
32 //Internal reference to notifications object
33 private static NotificationsManager notifications = null;
34
35 //--
36 // Called before Start on object creation
37 void Awake ()
38 {
39 //Check if there is an existing instance of this object
40 if((instance) && (instance.GetInstanceID() != GetInstanceID()))
41 DestroyImmediate(gameObject); //Delete duplicate
42 else
43 {
44 instance = this; //Make this object the only instance
45 DontDestroyOnLoad (gameObject); //Set as do not destroy
46 }
47 }
48 }

	Line 04. The RequiresComponent line is a Unity-specific command that can be

inserted into your classes to designate component dependence and relationships.

In this case, the GameManager class is said to require the NotificationsManager.

In practice, this means that every instance of GameManager requires its host

GameObject to also have a NotificationsManager component. If you add a

GameManager component to a GameObject without a NotificationsManager

already attached, then Unity will automatically add a NotificationsManager.

	Line 33. Here, we’ve declared an internal private reference to a

NotificationsManager component, which the GameManager will use for managing

events. In essence, this variable is a reference to the NotificationsManager

object that all other objects will use for sending and receiving events.

	Lines 20–27. A static C# Notifications property has been added to the

GameManager, offering global access to the NotificationsManager to all objects

in the game—meaning that all objects can send and receive notifications. We’ll

see the class in use shortly.

Note You could of course implement the NotificationsManager as a Singleton class, separate from the

GameManager, as opposed to being a member variable of it. However, in terms of class and object organization,

I prefer to have all global classes accessed as members of a single, singleton Game Manager object.

141CHAPTER 4: Power-Ups and Singletons

So we’ve now created a singleton Game Manager class that exposes a Notifications Manager property

to which all objects may send and receive application-wide event notifications, if they need to. Let’s

put these classes to the test in a practical context for CMOD. To prepare for this process in the Unity

Editor, first ensure an empty GameObject is created in the scene. I’ve named it GameManager. This

object should contain both a GameManager and a NotificationsManager component. Remember, due to

the RequiresComponent keyword, you don’t need to add both components manually. You can just add

a GameManager component to an object, and Unity automatically adds a NotificationsManager if

one doesn’t already exist. Having done this, our scene is configured for using the GameManager as a

globally accessible Singleton. We’ll see how to use it in the next section.

Completing the Cash Power-Up
Back in Listing 4-12, we coded a Cash Power-Up object to respond directly to an OnTriggerEnter event,

to handle player collisions. However, we also need this event to integrate with NotificationsManager

to notify all listener objects, in case they, too, need to respond when it happens. In other words,

the event OnTriggerEnter of Powerup_Dollar needs to be amended to post a notification to the

NotificationsManager. In this context, the NotificationsManager is accessible as a static member

variable of the globally accessible GameManager singleton. Consider the completed Powerup_Dollar

class in Listing 4-17, which posts an event notification.

Listing 4-17. Completed Cash Power-Up

01 //---
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Powerup_Dollar : MonoBehaviour
06 {
07 //Amount of cash to give player
08 public float CashAmount = 100.0f;
09
10 //Audio Clip for this object
11 public AudioClip Clip = null;
12
13 //Audio Source for sound playback
14 private AudioSource SFX = null;
15 //--
16 void Start()
17 {
18 //Find sound object in scene
19 GameObject SoundsObject = GameObject.FindGameObjectWithTag("sounds");
20
21 //If no sound object, then exit
22 if(SoundsObject == null) return;
23
24 //Get audio source component for sfx
25 SFX = SoundsObject.GetComponent<AudioSource>();
26 }
27 //--
28 //Event triggered when colliding with player

142 CHAPTER 4: Power-Ups and Singletons

29 void OnTriggerEnter(Collider Other)
30 {
31 //Is colliding object a player? Cannot collide with enemies
32 if(!Other.CompareTag("player")) return;
33
34 //Play collection sound, if audio source is available
35 if(SFX){SFX.PlayOneShot(Clip, 1.0f);}
36
37 //Hide object from level so it cannot be collected more than once
38 gameObject.SetActive(false);
39
40 //Get PlayerController object and update cash
41 PlayerController PC = Other.gameObject.GetComponent<PlayerController>();
42
43 //If there is a PC attached to colliding object, then update cash
44 if(PC) PC.Cash += CashAmount;
45
46 //Post power up collected notification, so other objects can handle this
 event if required
47 GameManager.Notifications.PostNotification(this, "PowerupCollected");
48 }
49 //--

	Line 47. This line represents a fantastic feature of static members and

Singletons! This is where they are a real joy to use, because in an important

sense they evade variable-scope considerations. To access the GameManager

and the NotificationsManager as global objects here, we didn’t need to declare

an internal variable for Powerup_Dollar. Nor did we need to find a game object

in the scene with GameObject.Find to retrieve its GameManager component.

Nor did we need to add a GameManager public variable or NotificationsManager

public variable to the Powerup_Dollar class to reference the active Singleton.

Instead, we simply use the convention, GameManager.Notifications. This gives

us direct access to the static member Notifications. In just one line, therefore,

we always access the NotificationsManager attached to the GameManager

singleton. Using this logic, we can also access the Singleton instance of the

GameManager by using the GameManager.Instance property. And this works

not just for the Powerup_Dollar class. In every class and every line throughout

our project, we can access the GameManager singleton instance using

this technique. No extra lines of coding are required. More on this powerful

technique will be seen throughout subsequent chapters!

Making a Prefab from the Completed Power-Up
The Cash Power-Up in the scene is now completed in terms of code and GameObject component

structure (see Figure 4-13). The final code for the power-up is given in Listing 4-17. However, at

this stage of development, we have only one power-up object, whereas our scene and the game

design requires us to have more. We could add further Cash Power-Ups in the existing scene

by simple object duplication (Ctrl+D), but these power-ups should also appear in other scenes,

and perhaps other games. To achieve this, then, the Power-Up should be turned into a Prefab for

infinite reusability.

143CHAPTER 4: Power-Ups and Singletons

To create a Prefab from the Cash Power-Up, select Assets ➤ Create ➤ Prefab from the application

menu (see Figure 4-14).

Figure 4-14. Creating a Prefab for the power-up

Figure 4-13. The completed Cash Power-UpNote: Before creating the Prefab for the Cash Power-Up. Don’t forget to attach an

audio clip from the Project panel into the Powerup_Dollar.Clip member, as shown in Figure 4-13

144 CHAPTER 4: Power-Ups and Singletons

Once created, drag and drop the power-up object in the Hierarchy panel onto the newly created

Prefab in the Project panel. Doing this completes Prefab creation. The Prefab can now be duplicated

in the same scene, as well as different scenes and projects (see Figure 4-15).

Figure 4-15. Completing the power-up Prefab

Creating Other Prefabs
CMOD features not just Cash Power-Ups, which we’ve created in this chapter, but also ammo-restore,

health-restore, and weapon-upgrade power-ups. Despite the differences in these power-ups, however,

they share the same basic mechanic. They are Billboard sprites with colliders that respond directly to

player collisions, interacting with the NotificationsManager on a GameManager singleton. The chief

difference between them rests not in their mechanics, but in their responses to collisions. The Cash

Power-Up increases Player cash, while health-restore affects Player health, and weapon-upgrade

changes the Player weapon, and so on. Their differences rest in what they actually do when a Player

collision occurs, but not in how collisions are fundamentally detected and handled.

145CHAPTER 4: Power-Ups and Singletons

For this reason, their implementation specifics need not be examined here, because creating them

follows the same basic process in which the Cash Power-Up was created. The classes are, however,

included in the book companion project files, should you wish to explore them and examine their

source code further. Specifically, the classes are Powerup_Ammo (ammo restore), Powerup_Burger

(health restore), and Powerup_Weapon (weapon upgrade). More information on these power-ups can

be found in Chapter 1, including Figures 1-5, 1-6, 1-7, and 1-8.

Conclusion
This chapter was primarily dedicated to creating a Cash Power-Up object, and in so doing, we’ve

seen a lot of critical C# and scripting concepts. There’s a lot more work going on with our power-

ups than there might seem at first glance. Once you open them and explore their innards, we see

they rely on physics, colliders, events, singletons, deltaTime, coroutines, and a host of other Unity

conventions. Having reached this far, however, we’re now in a strong position to begin development

of the Player character. This is considered in the next chapter. At this stage, you should be able to do

the following:

Create C#-based power-ups for your own projects	
Understand what Billboards are and how they work	
Understand coroutines and yield statements	
Use deltaTime to create frame-rate independent motion and animation	
Apply basic vector arithmetic and quaternion rotation	
Use the Unity Time class	
Understand the Singleton design pattern	
Create Singleton objects using static members	
Understand how the Unity RequiresComponent works	
Integrate NotificationsManager into your own games via Singletons	
Make Prefabs for your scenes	

147

Chapter 5
Player Controller

FPS games (first-person shooter games) are played, unsurprisingly, from a first-person perspective.

This means that game events, and the game world, are seen through the eyes of the main game

character—as though you were that person in that world. This perspective is perhaps one of the

most common kinds in contemporary video games. It’s used in some of the famous and biggest

selling games in history, including Call of Duty, Halo, Skyrim, and others. CMOD too will be an FPS

game. Consequently, we’ll need first-person behavior. Thankfully, lots of the underpinning coding

work for this is created for us, from the standard Unity Character Controller packages (specifically

the First Person Controller). However, this package features important limitations that we’ll want

to overcome for CMOD. Throughout this chapter, we’ll examine the First Person Controller further,

refining and adapting it by creating our own customized PlayerController class with first-person

functionality and more besides.

Character Controllers and the First Person Controller
The ready-made First Person Controller that ships with Unity is included in the Character Controllers

asset package, which can be imported into any project by selecting Assets ➤ Import Package ➤

Character Controller from the application main menu. This package is included in both the Free

and Pro versions of Unity (see Figure 5-1).

148 CHAPTER 5: Player Controller

Figure 5-1. Importing a First Person Controller (from the Character Controller package) into the Unity project

Note This chapter assumes you’re resuming work from where we left off in the previous chapter, or else

you can begin from the starting project associated with this chapter, included in the book companion files

inside folder Chapter04/Start.

After the Character Controller package is fully imported, you can easily add first-person functionality

to your game, simply by dragging and dropping the First Person Controller from the Project panel

into the scene. The First Person Controller is really a Prefab object. Adding this will typically override

any existing cameras in the scene, replacing them as the default scene camera. When running

the game with a First Person Controller, you may receive a printed error or warning in the console,

complaining about multiple audio listeners. The error usually reads: “There are 2 audio listeners in

the scene. Please ensure there is always exactly one audio listener in the scene,” (see Figure 5-2).

This normally happens when two or more cameras, each with an AudioListener component, are

active in the scene simultaneously. This causes sound/audio conflict because each AudioListener

represents a separate ear point or location from which sound is heard. To solve the problem, you

can delete any unnecessary cameras (always delete unnecessary objects!), or you can remove the

AudioListener component, or you can deactivate the AudioListener (if it’ll be needed at a later time).

The key point is: there should be no more than one AudioListener component active in the current

scene at any one time.

149CHAPTER 5: Player Controller

Note If you’re having trouble finding an asset in the Project panel, or an object in the Hierarchy panel, you

can always use the Search field to find them using the “t:” syntax. For example, to find all objects in the

scene with an AudioListener component, enter t:audiolistener.

Figure 5-2. Multiple audio listeners warning

The First Person Controller is already configured, through script, to respond to user input. The input

is default or typical first-person controls: WASD for navigation (forward, left, back, and right) and

mouse movement for head rotation. In general, the controller works well: it does what it’s supposed

to do. But still, there are two main areas where we could want improvement.

	Platform specific. If you’re making a desktop game for Windows, Mac, or

Linux, then the standard First Person Controller will serve most of your needs.

But if you try running the controller on a mobile device, such as iOS or Android,

you’ll find that it fails. The standard First Person Controller is not configured to

work from mobile input. It simply doesn’t respond to any mobile input. There is,

however, a separate and independent First Person Controller suited for mobile

input (included in the Standard Assets (Mobile) package). But this Prefab has

nothing to do with the standard First Person Controller. This can make cross-

platform first-person input tedious. Instead, it’d be great if we, as developers,

never had to worry about dealing with these two separate Prefabs. It’d be ideal

if we had just one universal First Person Controller; a Prefab that worked across

multiple platforms automatically—desktop and mobile. We’ll see how to achieve

this shortly.

150 CHAPTER 5: Player Controller

Note CMOD is not specifically a mobile game. We won’t be exploring mobile development in depth in this book.

Nonetheless, here (at the stage of input development) is an opportunity where we may configure and prepare our

game in an important way to be cross-platform, should we wish to pursue mobile development later.

	Head bobbing. The second problem relates to first-person camera movement

and believability. Specifically, both the mobile and desktop First Person

Controllers offer no native support for head bobbing. Whenever a human or

biped moves by walking, the overall “kinematics” of the legs and body in motion

typically causes the head to move involuntarily up and down. This motion is not

included in the default First Person Controllers, but it can add an extra level of

believability and realism to a game. In later sections, we’ll see how to add this

using sine waves.

Multiplatform Development
To get started creating a cross-platform (universal) First Person Controller, let’s examine platform

support in Unity and the general cross-platform workflow for games. Unity can build for many

platforms, including Windows, OS X, iOS, Android, Windows Phone, and more. The word can is

important here, because despite the platforms officially supported by Unity, deploying to them

actually involves additional considerations and issues for you as a developer. Not just technical

considerations about optimization and tweaking, but also economical and logistic considerations.

For example, to build and deploy to iOS devices, you’ll need an Apple Developer License, as well as

a Mac computer—you can’t build for iOS devices on a Windows PC, even with Unity Pro! Similarly,

to develop for Android, you’ll need to download and install the freely available Android SDK, whether

you’re developing on Windows or Mac. Without these requisites, you won’t be able to develop and

properly test mobile applications—so it’s important to be aware of them.

More information on developing for iOS can be found in the Unity official documentation at

http://docs.unity3d.com/Documentation/Manual/iphone-GettingStarted.html.

More information on developing for Android can be found at

https://docs.unity3d.com/Documentation/Manual/android-GettingStarted.html.

Once you’re configured and set to go for mobile development, you can start testing your game for

your chosen platform in Unity via the Build Settings dialog. By choosing File ➤ Build Settings…

from the application menu, you’ll display the Build settings. From here, you select your platform of

choice, and choose Switch Platform. Doing this forces Unity to apply all relevant platform settings

to your project. Consequently, the next time you hit Play on the Unity toolbar, your game behaves as

though it were running on the chosen mobile device (see Figure 5-3). With mobile apps such as Unity

Remote installed on your device, you can also control your game using a mobile device, such as a

tablet or phone.

http://docs.unity3d.com/Documentation/Manual/iphone-GettingStarted.html
https://docs.unity3d.com/Documentation/Manual/android-GettingStarted.html

151CHAPTER 5: Player Controller

Note Unity Remote can be downloaded for Android from the PlayStore at

https://play.google.com/store/apps/details?id=com.unity3d.androidremote.

For iOS, Unity Remote can be downloaded from the App Store at

https://itunes.apple.com/gb/app/unity-remote-3/id394632904?mt=8.

Figure 5-3. Switching platforms from the Build Settings dialog

Notice also that Unity offers per-platform settings for many features, including texture assets (see

Figure 5-4). Each platform tab in the Object Inspector allows you to control and specify settings

for an asset on a per-platform basis. This means, for example, that a texture can be sized and

compressed differently and optimally for each platform. Whenever the Build Settings dialog is used

to switch platform, as shown in Figure 5-3, Unity automatically switches and applies the appropriate

settings for all assets and features, according to their configuration. This makes cross-platform

developing a lot easier!

https://play.google.com/store/apps/details?id=com.unity3d.androidremote
https://itunes.apple.com/gb/app/unity-remote-3/id394632904?mt=8

152 CHAPTER 5: Player Controller

Beginning the Universal First Person Controller
Unity ships with two First Person Controller prefabs, the default First Person Controller included in

the Standard Assets (Character Controller) package, and the mobile First Person Controller, included

in the Standard Assets (Mobile) package. The crucial difference between these two controllers is

their handling of user input. The desktop controller expects user input from keyboards and mice

exclusively, and the mobile controller from mobile devices exclusively; and neither accepts input

from the other method. Our aim here, therefore, is to forge a bridge between these two controllers,

resulting in a new controller prefab that automatically handles input from any device, desktop

or mobile. Before getting started, be sure to import both the desktop and mobile First Person

Controllers into your project, if they’re not imported already (see Figure 5-5).

Figure 5-4. Per-platform texture settings

153CHAPTER 5: Player Controller

To create a universal first-person Prefab, we’ll add one instance of each First Person Controller to

the scene (one desktop and one mobile) and then we’ll explore the Platform Dependent Compilation

feature of Unity and C# to automatically switch to the appropriate controller for the active platform.

Start by adding the First Person Controllers to the scene, dragging and dropping them from the

Project panel to the scene. The desktop First Person Controller can be found in the Standard
Assets/Character Controllers folder. The mobile controller can be found in the Standard Assets
(Mobile)/Prefabs folder (see Figure 5-6).

Figure 5-5. Importing the mobile First Person Controller from the Standard Assets (Mobile) asset package

154 CHAPTER 5: Player Controller

Note Remember to delete any other cameras in the scene, if there are any. We won’t need them since our

game is exclusively first-person.

Figure 5-6. Importing the desktop and mobile First Person Controllers into the active scene

Obviously, we’re going to write some C# script to switch between these two controllers at level-

start, on a per-platform basis—the desktop controller used for desktop games, and the mobile

controller for mobile games. But first, let’s apply some GameObject organization to the scene, as

opposed to simply leaving the two newly added controllers as separate objects. I want to organize

both controllers under a single GameObject umbrella that eventually, when taken as a whole, will

become a Player prefab—an object we’ll reuse as often as we need for other scenes and levels. The

First Person Controller prefabs we’ve created will only form a part of that Player object—because the

Player can do more than just move around the scene. To get started, I’ll create two new and empty

GameObjects: Player and Controls. These are created using the menu item GameObject ➤ Create

Empty. The Player GameObject represents the root object for the Player prefab. Beneath this (as a

child game object) will be the Controls object. Then I’ll add both First Person Controller objects as

children of the Controls object. The hierarchy looks like Figure 5-7.

155CHAPTER 5: Player Controller

Note I’ve also overlapped the two First Person Controller objects in the scene, so each starts from the same

position. Since we’ll only need one of these two controllers, depending on the platform, their overlapping

won’t matter in terms of physics or collision. The other, unneeded, controller will be deactivated automatically

at level start (as we’ll see soon).

Figure 5-7. Creating a GameObject hierarchy for adding universal first-person controls to a Player prefab

Note Take care to position the mobile controller at the world origin (0, 0, 0). Due to its implementation,

the screen position of the left and right touch pads for mobile input are based on the controller’s start position

in the world. If a different world position is used, then, the mobile inputs will be offset on-screen.

Next, let’s rename the First Person Controller objects to differentiate the desktop and mobile

controllers. I’ve used the names DesktopController and MobileControls (see Figure 5-8).

156 CHAPTER 5: Player Controller

In Listing 4-11 in the previous chapter, we examined collision detection with Cash Power-Ups. In

that sample, the OnTriggerEnter event was used to detect the intersection of a rigid body with

the power-up. While coding that event, we were aware that, in the future, there would be several

rigid bodies moving around the level during gameplay, namely the Player and Enemies. Since we

wanted to avoid enemies collecting power-ups, we coded OnTriggerEnter to verify the colliding

objects’ tag, ensuring it was marked as player. To ensure our player object, and its First Person

Controllers, work in conjunction with that functionality, we’ll need to tag the relevant objects as

player. Since the desktop and mobile First Person Controllers are implemented slightly differently,

we’ll need to tag different GameObjects in each one. For the desktop First Person Controller, the

root object DesktopController should be marked as player (since it features the physics-based

CharacterController component). For the MobileController, it should be the object named player,

which is a child object embedded deep within the Mobile prefab—again, this object features the

CharacterController component (see Figure 5-9).

Figure 5-9. Tagging objects in First Person Controllers to work with power-up collision

Figure 5-8. Renaming the First Person Controllers

157CHAPTER 5: Player Controller

Platform Dependent Compilation
The desktop and mobile controllers are now added and configured successfully in the scene. If you

run the game now, however, both controllers will be active and operational—working simultaneously:

desktop input controlling the desktop controller, and mobile input controlling the mobile controller.

That’s not what we want. The aim now is to code a C# script to deactivate the redundant controller

at scene start-up, leaving us with the relevant controller, based on the target platform. This can be

achieved using a Unity C# feature known as Platform Dependent Compilation. To see this in action,

create a new C# script file, ControlSwitcher.cs, and attach this as a component to the Controls

GameObject, created in the previous section (see Figure 5-10). Then take a look at Listing 5-1 for

ControlSwitcher.cs, after which comments follow.

Figure 5-10. Attaching a ControlSwitcher script to the Controls object. This script will deactivate the redundant First Person

Controller on scene start-up

Listing 5-1. ControlSwitcher.cs: Deactivates Redundant First Person Controller

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class ControlSwitcher : MonoBehaviour
06 {
07 //--
08 //Reference to desktop first person controller (default)
09 public GameObject DesktopFirstPerson = null;
10
11 //Reference to mobile first person controller
12 public GameObject MobileFirstPerson = null;
13
14 //--
15 //Select appropriate first person control for platform

158 CHAPTER 5: Player Controller

16 void Awake()
17 {
18 //If mobile platform, then use mobile first person controller
19 #if UNITY_IPHONE || UNITY_ANDROID || UNITY_WP8
20 DesktopFirstPerson.SetActive(false);
21 MobileFirstPerson.SetActive(true);
22 #endif
23 }
24 //--
25 }

	Lines 09–12. This class defines two public variables: DesktopFirstPerson and

MobileFirstPerson. These are references to each of the controllers, one of

which should be disabled on Awake.

	Lines 19–22. The Awake event is called implicitly before Start, when the scene

begins. Line 19 uses the Platform Dependent Compilation syntax to define two

subsequent lines that should execute, only if the platform is iPhone, Android, or

Windows Phone. The global flag UNITY_IPHONE encompasses all iOS devices,

such as iPads and iPhones. In this sample, if the platform is a mobile device,

then the desktop controller is deactivated and the mobile controller is activated.

Notice there is no branch for a desktop platform. Why? We can simply avoid

coding this branch by deactivating the mobile First Person Controller by default

in the Unity Editor. This way, the default configuration saves us coding and time!

It’s important to understand both what is happening and is not happening regarding Platform

Dependent Compilation. Line 19 of Listing 5-1 is not executed every time the game runs on every

platform. The Awake function is not performing a runtime check for the active Unity platform, and

then acting accordingly. The #if directive is not the same as an if statement. The #if directive

works at the compilation level and not at a runtime level. In practice, Listing 5-1 means that when the

Unity platform is switched to desktop, the compiler recompiles the ControlSwitcher script and treats

lines 19–22 as code comments, since the active platform is not a mobile one. The compiler only

recognizes lines 19–22 as valid when the active platform is mobile.

Go ahead and give this code a try—the result is a universal First Person Controller. Whether you’re

on desktop or mobile, your scene now has a First Person Controller ready to use!

Note If you just want to make a runtime check for the active Unity platform, then use Application.

platform. See the online Unity documentation at https://docs.unity3d.com/Documentation/

ScriptReference/Application-platform.html.

Head Bobbing and Sine Waves
Whenever the First Person Controller walks forward or backward, we want the camera to bob or

oscillate up and down smoothly in the Y axis. This is to simulate the involuntary head movement that

occurs naturally whenever most bipeds, like humans, move using their legs. We could, of course,

implement this behavior by resorting to the familiar bobbing motion technique created for the Cash

Power-Up in the previous chapter. But this motion was decidedly linear and mechanical. That is,

https://docs.unity3d.com/Documentation/ScriptReference/Application-platform.html
https://docs.unity3d.com/Documentation/ScriptReference/Application-platform.html

159CHAPTER 5: Player Controller

the Cash Power-Up moves up and down at a constant speed and in a straight line. Head motion,

however, isn’t really like this: its movement upward is slightly slower than its movement downward.

There’s a smooth ease-in and ease-out motion that unravels with our heads whenever we walk

around. In fact, if this motion could be plotted on a line graph, in terms of the camera Y position

over time, it would probably create a curve and not a straight line. This curve, when repeated in

sequence, would look like a wave. In real life, our head motion may not really form a completely

smooth and repeating curve, but it could be approximated believably in a video game by using such

a curve. One type of curve that creates repeated oscillation is a sine wave (see Figure 5-11).

Figure 5-11. Sine waves are useful for creating smooth oscillations in motion

Mathematically, there are two main parts to a sine wave—at least, the two parts of interest to us in

creating head bobbing; these are the frequency and the amplitude of the wave (see Figure 5-11).

The amplitude refers to the tallness of the wave—it represents how strong the head bob should

be. Higher amplitude values will produce higher and lower head bobs—more extreme offsets from

a default center. The frequency refers to the size or horizontal length of one complete wave cycle

(known as a period). The higher the frequency, the more wibbly-wobbly the wave is! In other words,

higher frequencies will make the head bob happen more often and quickly. The general formula for

producing a sine wave is sin(angle × frequency) × amplitude. If frequency is 1, then a range of 0–360

degrees for angle will produce one complete period for the wave. Values outside this range (higher or

lower) will simply produce repetitions of the same wave—so you never need to worry about clamping

between 0–360 for sine waves.

Now let’s code a C# class that can be attached to the First Person Controller to add head-bob

motion. I’ll call this class HeadBob.cs (see Listing 5-2; comments follow).

Listing 5-2. HeadBob.cs: Script to Add Head-Bob Motion to Camera Through Sine Waves

01 //--
02 //Class to make first person camera bob gently up and down while walking
03 using UnityEngine;
04 using System.Collections;
05 //--

160 CHAPTER 5: Player Controller

06 public class HeadBob : MonoBehaviour
07 {
08 //Strength of head bob - amplitude of sine wave
09 public float Strength = 1.0f;
10
11 //Frequency of wave
12 public float BobAmount = 2.0f;
13
14 //Neutral head height position
15 public float HeadY = 1.0f;
16
17 //Cached transform
18 private Transform ThisTransform = null;
19
20 //Elapsed Time since movement
21 private float ElapsedTime = 0.0f;
22
23 //--
24 void Start()
25 {
26 //Get transform
27 ThisTransform = transform;
28 }
29 //--
30 // Update is called once per frame
31 void Update ()
32 {
33 //If input is not allowed, then exit
34 if(!GameManager.Instance.InputAllowed) return;
35
36 //Get player movement if input allowed
37 float horizontal = Mathf.Abs(Input.GetAxis("Horizontal"));
38 float vertical = Mathf.Abs(Input.GetAxis("Vertical"));
39
40 //Total movement
41 float TotalMovement = Mathf.Clamp(horizontal + vertical,0.0f,1.0f);
42
43 //Update elapsed time
44 ElapsedTime = (TotalMovement > 0.0f) ? ElapsedTime += Time.deltaTime : 0.0f;
45
46 //Y Offset for headbob
47 float YOffset = Mathf.Sin (ElapsedTime * BobAmount) * Strength;
48
49 //Create position
50 Vector3 PlayerPos = new Vector3(ThisTransform.position.x, HeadY + YOffset *

TotalMovement, ThisTransform.position.z);
51
52 //Update position
53 ThisTransform.position = PlayerPos;
54 }
55 //--
56 }

161CHAPTER 5: Player Controller

	Lines 09 and 12. The public class members Strength and BobAmount define the

amplitude and frequency of the sine wave, respectively. They can be used to

control and customize the sine wave to affect head bobbing.

	Line 15. The HeadY value will represent the camera Y position in the scene when

at rest. During movement, the camera Y position will be offset from this center

as a result of the sine wave.

	Line 34. I’ve added a Boolean member to the GameManager InputAllowed,

which can be set to false to disable user input. All input-reading classes should

verify this variable before processing input.

	Lines 37 and 38. Together these lines will result in two variables, either 1 or 0,

indicating whether the user is moving the First Person Controller (1=Yes, 0=No).

If yes, then we’ll need to apply head-bob movement; otherwise, the camera

should be at its default Y position.

	Line 44. The ElapsedTime variable keeps track of the total elapsed time in

seconds since the Player started moving. This value will be used for calculating

the sine wave.

	Line 47. Finally, the amount of Y offset for the camera on the current frame is

calculated using the Mathf.Sin function, along with the amplitude and frequency

parameters.

Now add the HeadBob.cs script to the First Person Controllers, and then take them for a test run

in-game. Your First Person Controller should now display a distinct head bob when walking. The final

details can be tweaked using the class public member variables from the Object Inspector

(see Figure 5-12).

Figure 5-12. Assigning the HeadBob script to First Person Controllers

162 CHAPTER 5: Player Controller

First-Person Capsule Mesh
Next, let’s get to work on creating a general PlayerController.cs class for handling most high-level

player functionality. The first issue to address with this class concerns the player controllers. Both

the desktop and mobile First Person Controllers feature a renderable capsule mesh, which is both

visible in the Unity Editor and at runtime. Normally, the capsule mesh is not visible during gameplay,

but this is only because the controller camera is positioned in a specific way. In theory, the capsule

could be seen if reflective materials were used in the scene or if the camera were offset through

animation (and it will be later). There’s nothing either in principle or practice to prevent the capsule

mesh from being seen, and normally we don’t want it to be seen. So let’s hide it at runtime using

a C# script, as opposed to disabling it in the editor. This lets us continue seeing the capsule mesh

in the editor at design time. To get started, create a PlayerController.cs file. This will be added

to each First Person Controller object—attached to the same object as the HeadBob script—the

object marked with the player tag (see Figure 5-13). This is important for later because this script

will also handle Player collision events with power-ups: specifically, cash allocation (see Listing 5-3;

comments follow).

Figure 5-13. Adding the PlayerController script to First Person Controller objects

Listing 5-3. PlayerController.cs: Disabling Capsule Meshes for First Person Controllers

01 //--
02 using UnityEngine;
03 using System.Collections;
04 using System.Collections.Generic;
05 //--
06 public class PlayerController : MonoBehaviour
07 {
08 //--

163CHAPTER 5: Player Controller

09 //Reference to transform
10 private Transform ThisTransform = null;
11
12 //--
13 //Called when object is created
14 void Start()
15 {
16 //Get First person capsule and make non-visible
17 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
18 Capsule.enabled = false;
19
20 //Get cached transform
21 ThisTransform = transform;
22 }
23 }

	Line 17. Here, the GetComponentInChildren API function is called to search

through the GameObject hierarchy, from the current object downward, to find

the first mesh renderer component. For First Person Controllers, there’s only

one mesh renderer—the capsule collider. Line 18 disables the render, hiding the

collider.

Note More information on GetComponentInChildren can be found in the Unity documentation at

https://docs.unity3d.com/Documentation/ScriptReference/Component.

GetComponentInChildren.html.

Handling Cash Collection
Before proceeding, jump back to the previous chapter and consider Listing 4-11, especially lines

41 and 44. This sample implements the Cash Power-Up OnTriggerEnter event, which is called

each and every time the Player collides with the power-up in the scene. Lines 41 and 44 retrieve a

PlayerController component, attached to the Player GameObject, and increases its Cash member. In

other words, the PlayerController needs to implement a Cash variable to maintain its collected cash,

and this member should be increased for each Cash Power-Up collected. The Cash member should

be implemented as a property, and not a public variable. Doing this is consistent with the event-

handling functionality coded in Chapter 3, because properties allow us to validate the assignment

of values to variables, giving us the opportunities to call functions and invoke event notifications.

For cash collection, we’ll need to verify whether the collected cash exceeds or meets the total cash

available in the level. Remember, when the Player collects all available cash, the level is completed!

The PlayerController class can be amended to support cash collection using the code in Listing 5-4.

https://docs.unity3d.com/Documentation/ScriptReference/Component.GetComponentInChildren.html
https://docs.unity3d.com/Documentation/ScriptReference/Component.GetComponentInChildren.html

164 CHAPTER 5: Player Controller

Listing 5-4. Changing PlayerController.cs to Handle Cash Collection

01 //--
02 using UnityEngine;
03 using System.Collections;
04 using System.Collections.Generic;
05 //--
06 public class PlayerController : MonoBehaviour
07 {
08 //--
09 //Amount of cash player should collect to complete level
10 public float CashTotal = 1400.0f;
11
12 //Amount of cash for this player
13 private float cash = 0.0f;
14
15 //Reference to transform
16 private Transform ThisTransform = null;
17
18 //--
19 //Called when object is created
20 void Start()
21 {
22 //Get First person capsule and make non-visible
23 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
24 Capsule.enabled = false;
25
26 //Get cached transform
27 ThisTransform = transform;
28 }
29 //--
30 //Accessors to set and get cash
31 public float Cash
32 {
33 //Return cash value
34 get{return cash;}
35
36 //Set cash and validate, if required
37 set
38 {
39 //Set cash
40 cash = value;
41
42 //Check collection limit - post notification if limit reached
43 if(cash >= CashTotal)
44 GameManager.Notifications.PostNotification(this, "CashCollected");
45 }
46 }
47 //--
48 }

165CHAPTER 5: Player Controller

	Lines 10 and 13. Two variables have been added: TotalCash representing

the total amount of cash to collect in the level, and cash, a private variable

representing the amount of cash actually collected. The TotalCash variable

could instead be added to the GameManager or to a separate Level class since

it relates specifically to the level, as opposed to the player.

	Lines 31–46. The Cash property gets and sets the private cash variable for the

PlayerController. If all cash has been collected, then a CashCollected event is

fired. Typically, the GameManager will listen for and handle this event to end the

current level and move to the next.

After adding this code to the First Person Controllers, be sure to test it by running the game in-editor

and collecting power-ups. Use Debug.Log statements to help determine program flow. Get into the

habit of testing often. Don’t simply write many pages of code without testing, even if you’re confident

there are no mistakes. It’s easy to overlook even typographical errors. Instead, add some lines of code,

test them, and then fix, if required. Back and forth between coding and testing. This helps you to

eliminate bugs before they even get introduced.

For testing cash collection, I’d temporarily turn the Cash variable into public, as opposed to private, so

I can see its value in the Object Inspector. Then I’d play-test in-editor, observing the Cash value in the

Object Inspector as power-ups are collected. Remember, the Object Inspector is a powerful debugging

tool (see Figure 5-14) as well! Don’t forget to switch Cash back to private once you’re done.

Figure 5-14. Using the Object Inspector as a debugging tool to observe cash collection behavior

166 CHAPTER 5: Player Controller

Life and Death: Getting Started
Historically and philosophically, there’s much of interest to be said about the way video games

implement life and death. Here, CMOD uses the “traditional” approach where Player life or health

is expressed quantitatively as an integer between 0–100; 0 is death and 100 is full health. Similarly,

in keeping with retro side-scrollers where you can attack a phone booth and get a health-restoring

turkey out of it, CMOD allows you to pick up floating, restorative hamburger power-ups to restore

health. These tasty burgers have the power-up to heal bullet wounds and punch attacks. Death,

however, comes upon the Player when health reaches 0 or below; and this typically happens

because of enemy attacks. Here again, CMOD takes the traditional approach to death: when

death arrives, the scene is restarted and the Player respawns back to the level origin, allowing

a resurrection ad infinitum. So let’s start implementing these concepts now, starting with a

consideration of death.

When the Player dies, I’d like to play a small death-sequence before restarting the level in the form

of a camera animation. Specifically, the camera should roll over and fall to the ground. This simple

transformation-style animation can be recorded using the Unity Animation Editor, through

Window ➤ Animation. This editor works through key framing (see Figure 5-15). There I’ve defined

two key frames for rotation and position, defining the motion for the camera as it falls to the ground.

I’m going to apply the animation to a newly created empty game object, AnimatedCamera, which has

been parented to the First Person Controller camera (as we’ll see shortly), to keep the translation and

rotation separate from the camera transformations themselves. When the animation is saved from

the editor, it’s added automatically as an animation clip asset in the Project panel. I’ve named the

asset CameraDeath.

Figure 5-15. Creating a basic camera fall animation using the Legacy Animation Editor

167CHAPTER 5: Player Controller

The animation asset itself just defines a generic animation sequence in terms of key frames and

transformations; these could apply to any GameObject. For the death sequence, I’ll first create

empty objects (named AnimatedCamera), added to the First Person Controller, as parents of the

Camera objects. Make sure their transformations are set to 0 for all positions and rotations (see

Figure 5-16). Then add Animator components to the objects, which will handle the animation

functionality through the Mecanim system. Animator components can be added from the main menu

by choosing Component ➤ Miscellaneous ➤ Animator.

Note More information on the Unity Legacy Animation Editor can be found at https://docs.unity3d.

com/Documentation/Components/animeditor-UsingAnimationEditor.html.

Remember, the animation and completed project for this chapter are included in the chapter companion files

at Chapter05/Completed.

Figure 5-16. Adding animations to camera parent objects. Doing this may break connections with existing Prefabs—but that’s

fine in this case

The added Animator component begins empty, without any associations to animation. We’ll fix

that now. Specifically, we’ll create an AnimationController asset that will drive the camera death

animation when health reaches less than 0. To do this, create a new AnimationController asset,

right-clicking in the Project panel and choosing Create ➤ Animation Controller from the context

menu. View the Animation Controller (see Figure 5-17) using the Animator window (not the

Animation window).

https://docs.unity3d.com/Documentation/Components/animeditor-UsingAnimationEditor.html
https://docs.unity3d.com/Documentation/Components/animeditor-UsingAnimationEditor.html

168 CHAPTER 5: Player Controller

Note Personally, I’m not entirely convinced the term Animator is appropriate for this editor. It’s not wholly

descriptive of what it actually does. Specifically, it’s a node editor and a form of visual programming that’s

concerned with wiring-up animation sequences into a logical arrangement to control their playback under

specific conditions. I think that animation dynamics or animation nodes would be more descriptive names.

But anyway, Animator is the name currently assigned to the editor by Unity Technologies; and I’ll use this

name throughout the rest of the book, where applicable.

Figure 5-17. Using the Animator window to control animation logic

To control the logic for camera animation I’ve added two states: a default state, with no associated

animation clip, that transitions into the death animation state, associated with the CameraDeath

animation clip. The transition between the default and death state is controlled by a Death trigger

parameter. This means that when the Death trigger is set to true, the camera death animation will

play (see Figure 5-18). For this trigger to fire, a script must be used.

169CHAPTER 5: Player Controller

Figure 5-18. Building a transition from the default state to the death state

Making Death: Scripting with Mecanim
Together, the animation clip and the Animation Controller define the animation key frames and

general playback logic. But still, the act of triggering and playing the animation when death occurs

needs to be coded. This will be achieved by amending the PlayerController.cs script (see Listing

5-5 for further PlayerController refines, followed by comments).

Listing 5-5. Refining PlayerController for a Death Animation

01 //--
02 using UnityEngine;
03 using System.Collections;
04 using System.Collections.Generic;
05 //--
06 public class PlayerController : MonoBehaviour
07 {
08 //--
09 //Amount of cash player should collect to complete level
10 public float CashTotal = 1400.0f;
11

170 CHAPTER 5: Player Controller

12 //Amount of cash for this player
13 private float cash = 0.0f;
14
15 //Reference to transform
16 private Transform ThisTransform = null;
17
18 //Respawn time in seconds after dying
19 public float RespawnTime = 2.0f;
20
21 //Get Mecanim animator component in children
22 private Animator AnimComp = null;
23
24 //--
25 //Called when object is created
26 void Start()
27 {
28 //Get First person capsule and make non-visible
29 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
30 Capsule.enabled = false;
31
32 //Get Animator
33 AnimComp = GetComponentInChildren<Animator>();
34
35 //Get cached transform
36 ThisTransform = transform;
37 }
38 //--
39 //Accessors to set and get cash
40 public float Cash
41 {
42 //Return cash value
43 get{return cash;}
44
45 //Set cash and validate, if required
46 set
47 {
48 //Set cash
49 cash = value;
50
51 //Check collection limit - post notification if limit reached
52 if(cash >= CashTotal)
53 GameManager.Notifications.PostNotification(this, "CashCollected");
54 }
55 }
56 //--
57 //Function called when player dies
58 public IEnumerator Die()
59 {
60 //Disable input
61 GameManager.Instance.InputAllowed = false;
62
63 //Trigger death animation if available

171CHAPTER 5: Player Controller

64 if(AnimComp) AnimComp.SetTrigger("ShowDeath");
65
66 //Wait for respawn time
67 yield return new WaitForSeconds(RespawnTime);
68
69 //Restart level
70 Application.LoadLevel(Application.loadedLevel);
71 }
72 //--
73 }

	Lines 19 and 22. The Respawn time variable is effectively a waiting period

used by the Die coroutine. It expresses the amount of time in seconds to wait

before restarting the level, allowing enough time for the death animation to

play. The AnimComp member is an internal reference to the camera’s Animator

component; used for controlling and invoking animation states in the Animator

Controller. A reference to this component is retrieved in the class Start event,

at line 33.

	Lines 58–72. The Die coroutine is currently not called by anything in the class. It

will be invoked later when Player health reduces to 0 or less, to invoke the death

animation. When the coroutine is called, the ShowDeath trigger is set in the

AnimationController—notice the name “ShowDeath” matches exactly the trigger

name in the Animation Controller. When this trigger is set, the camera death

animation will be played. In addition, the Application.LoadLevel API function is

called to reload the level (respawn behavior).

Note More information in Application.LoadLevel can be found in the Unity online documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Application.LoadLevel.html.

There are also variations of this function, including LoadLevelAsync and LoadLevelAdditive.

Implementing Health
The Player needs a health feature to keep track of his lifeline in-game. This feature is also important

for determining whether a death and respawn are required. Take a look at Listing 5-6 to see how

PlayerController is refined to implement health and death in full. Relevant changes are highlighted

in bold. Then, in subsequent sections, we’ll explore the code deeper to see how it works more

thoroughly. The full PlayerController.cs file is included in the chapter companion files.

Listing 5-6. PlayerController, Life and Death

001 //--
002 using UnityEngine;
003 using System.Collections;
004 using System.Collections.Generic;
005 //--

http://docs.unity3d.com/Documentation/ScriptReference/Application.LoadLevel.html

172 CHAPTER 5: Player Controller

006 public class PlayerController : MonoBehaviour
007 {
008 //--
009 //Amount of cash player should collect to complete level
010 public float CashTotal = 1400.0f;
011
012 //Amount of cash for this player
013 private float cash = 0.0f;
014
015 //Reference to transform
016 private Transform ThisTransform = null;
017
018 //Respawn time in seconds after dying
019 public float RespawnTime = 2.0f;
020
021 //Player health
022 public int health = 100;
023
024 //Get Mecanim animator component in children
025 private Animator AnimComp = null;
026
027 //Private damage texture
028 private Texture2D DamageTexture = null;
029
030 //Screen coordinates
031 private Rect ScreenRect;
032
033 //Show damage texture?
034 private bool ShowDamage = false;
035
036 //Damage texture interval (amount of time in seconds to show texture)
037 private float DamageInterval = 0.2f;
038 //--
039 //Called when object is created
040 void Start()
041 {
042 //Get First person capsule and make non-visible
043 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
044 Capsule.enabled = false;
045
046 //Get Animator
047 AnimComp = GetComponentInChildren<Animator>();
048
049 //Create damage texture
050 DamageTexture = new Texture2D(1,1);
051 DamageTexture.SetPixel(0,0,new Color(255,0,0,0.5f));
052 DamageTexture.Apply();
053
054 //Get cached transform
055 ThisTransform = transform;
056 }

173CHAPTER 5: Player Controller

057 //--
058 //Accessors to set and get cash
059 public float Cash
060 {
061 //Return cash value
062 get{return cash;}
063
064 //Set cash and validate, if required
065 set
066 {
067 //Set cash
068 cash = value;
069
070 //Check collection limit - post notification if limit reached
071 if(cash >= CashTotal)
072 GameManager.Notifications.PostNotification(this, "CashCollected");
073 }
074 }
075 //--
076 //Accessors to set and get health
077 public int Health
078 {
079 //Return health value
080 get{return health;}
081
082 //Set health and validate, if required
083 set
084 {
085 health = value;
086
087 //Playe Die functionality
088 if(health <= 0) gameObject.SendMessage("Die",SendMessageOptions.

DontRequireReceiver);
089 }
090 }
091 //--
092 //Function to apply damage to the player
093 public IEnumerator ApplyDamage(int Amount = 0)
094 {
095 //Reduce health
096 Health -= Amount;
097
098 //Post damage notification
099 GameManager.Notifications.PostNotification(this, "PlayerDamaged");
100
101 //Show damage texture
102 ShowDamage = true;
103
104 //Wait for interval
105 yield return new WaitForSeconds(DamageInterval);
106

174 CHAPTER 5: Player Controller

107 //Hide damage texture
108 ShowDamage = false;
109 }
110 //--
111 //ON GUI Function to show texture
112 void OnGUI()
113 {
114 if(ShowDamage){GUI.DrawTexture(ScreenRect,DamageTexture);}
115 }
116 //--
117 //Function called when player dies
118 public IEnumerator Die()
119 {
120 //Disable input
121 GameManager.Instance.InputAllowed = false;
122
123 //Trigger death animation if available
124 if(AnimComp) AnimComp.SetTrigger("ShowDeath");
125
126 //Wait for respawn time
127 yield return new WaitForSeconds(RespawnTime);
128
129 //Restart level
130 Application.LoadLevel(Application.loadedLevel);
131 }
132 //--
133 void Update()
134 {
135 //Build screen rect on update (in case screen size changes)
136 ScreenRect.x = ScreenRect.y = 0;
137 ScreenRect.width = Screen.width;
138 ScreenRect.height = Screen.height;
139 }
140 //--
141 }

Health and Damage: Procedural Textures
Listing 5-6 implemented the bulk of the PlayerController class. This class features a health value,

defined as private integer member health (line 22). Access to this value is controlled through the

public Health property, which validates the health value each time it’s updated or changed. When

(and if) it reaches 0 or below, the Player death functionality is executed, as shown in line 87. Notice,

however, that additional functions and variables were added to PlayerController, besides simply

a Health property. Of special significance is the ApplyDamage coroutine, which can be called to

damage the Player. Damage in this sense might seem merely a matter of just reducing Player health,

but typically we want to do more. When the Player is damaged, we may want to play a sound and

flash the screen red to offer graphical feedback that damage has been taken. These effects are not

essential, but they emphasize a point to the gamer that something bad happened. The ApplyDamage

coroutine achieves this effect by fading a red texture into view. Let’s examine further exactly how it

does this (see Listing 5-7, which is an extract from Listing 5-6).

175CHAPTER 5: Player Controller

Listing 5-7. Creating Textures

039 //Called when object is created
040 void Start()
041 {
042 //Get First person capsule and make non-visible
043 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
044 Capsule.enabled = false;
045
046 //Get Animator
047 AnimComp = GetComponentInChildren<Animator>();
048
049 //Create damage texture
050 DamageTexture = new Texture2D(1,1);
051 DamageTexture.SetPixel(0,0,new Color(255,0,0,0.5f));
052 DamageTexture.Apply();
053
054 //Get cached transform
055 ThisTransform = transform;
056 }

The Start event for PlayerController has been amended to create a texture in code to be used as

a red damage texture when damage is taken. This red texture could have been created manually in

an image editor and imported as a texture asset; but when bold-color textures are required (often

red, black, and white) it’s usually more convenient to generate them from code. Here, a texture of

size 1×1 pixel in dimensions is created, and the SetPixel method of Texture2D is used to fill the

texture with the RGB value for red. Notice that the Apply method has also been called to confirm

the SetPixel operation. This code doesn’t actually display the texture on-screen; texture display is

covered in the next section. More information on Texture2D can be found in the Unity documentation

at http://docs.unity3d.com/Documentation/ScriptReference/Texture2D.html.

Note Although the red texture is generated at 1×1 pixels, it doesn’t have to display on-screen at that size;

textures can be stretched. This means a 1×1–pixel red texture can be upsized to the screen dimensions

to fill the screen with red. Normally, the upsizing of textures is to be avoided due to quality loss caused by

resampling, but this is an exceptional case. Quality loss doesn’t apply to a texture filled with a single color.

GUIs
The previous section demonstrated how fill textures can be generated procedurally. This section

explores how we can show textures on-screen quickly using the native GUI functionality. The Unity

GUI classes are designed to display GUI elements in screen space. And we can use them here to fill

a red texture across the screen. This happens in the native event OnGUI (see Listing 5-8, which is an

extract of Listing 5-6).

http://docs.unity3d.com/Documentation/ScriptReference/Texture2D.html

176 CHAPTER 5: Player Controller

Listing 5-8. Displaying Textures

110 //--
111 //ON GUI Function to show texture
112 void OnGUI()
113 {
114 if(ShowDamage){GUI.DrawTexture(ScreenRect,DamageTexture);}
115 }

 //[…]

132 //--
133 void Update()
134 {
135 //Build screen rect on update (in case screen size changes)
136 ScreenRect.x = ScreenRect.y = 0;
137 ScreenRect.width = Screen.width;
138 ScreenRect.height = Screen.height;
139 }
140 //--

Here, the Update function is used to size a rectangle structure (ScreenRect) to the screen dimensions

(in pixels). This rect is updated on each frame, instead of being generated at application-start, since

it’s possible, in some circumstances, for the display size to change during gameplay. For example,

the user could change the screen resolution or resize the game window. The OnGUI function is where

the texture is drawn or flashed to the display for a few seconds while damage is taken, using a call

to GUI.DrawTexture. The OnGUI function is called implicitly by Unity several times per frame. This

means OnGUI is usually called more regularly than Update, making it one of the most computationally

expensive events and a frequent source of performance problems. In short, you’ll almost never want

to do anything in OnGUI, except draw graphical elements using the native GUI class. And there are

even developers who recommend never using OnGUI at all, even for GUIs. For my part, while the GUI

class and OnGUI events can be useful for drawing limited GUIs (such as showing flashing red textures),

I almost never use it for GUIs, because I find it often causes performance issues on mobile devices.

Sometimes workarounds can be used, but later in this book we’ll see an alternative method for GUIs.

In this case, however, OnGUI can be used profitably to display a damage animation.

Note Don’t just take my word that this code works. Test it for yourself. Temporarily edit the Update event,

for example, so that a key press triggers the ApplyDamage event, to see the damage functionality in action!

177CHAPTER 5: Player Controller

Conclusion
So, reaching this far, we’ve created a working and flexible PlayerController class offering universal

first-person functionality that works on both desktop and mobile devices, and can also collect

power-ups whenever it intersects them in the scene. Further, the controller implements health and

death functionality. By now, you should be able to do the following:

Create a universal First Person Controller	
Understand Platform Dependent Compilation	
Understand sine waves and smooth motion	
Create a head-bob animation for a camera	
Integrate the PlayerController into the event and notification system	
Handle collision events	
Maintain collected cash	
Generate procedural textures	
Understand the limitations of GUIs and OnGUI	
Use Mecanim and the Animator to define the logic for animations	
Maintain Player health	

179

Chapter 6
Weapons

Let’s quickly recap what we’ve done so far in CMOD. At this stage, we’ve created a complete

game environment with rooms and corridors, collectable power-up objects for health restore and

cash bonuses, a notifications manager class to send and dispatch events to game objects, and

a universal player controller for desktops and mobiles, including first-person functionality with a

complementary head bob. In this chapter, we’ll build on this existing work by adding weapons for

the Player character—specifically, a short-range fists/punch weapon (the default weapon) and a

long-range gun weapon, which can be collected through a weapons power-up. The purpose of these

weapons is to damage Enemy characters. Of course, right now, we haven’t created any enemies for

CMOD—they’ll be coded in the next chapter. But here we’ll at least make a start with weapons.

In creating these, a wide range of Unity and C# concepts will be explored in depth; specifically, sprite

and object animation, physics and rays, object orientation, class inheritance and polymorphism.

So let’s get started . . .

Weapons Overview
CMOD features a total of two weapons that can be used by the Player character; though only one

weapon may be active and in use at any one time. These weapons are fists that punch (as shown in

Figure 6-1) and a gun (as shown in Figure 6-2). These weapons are considered in more detail next.

Figure 6-1. The default fists/punch weapon

180 CHAPTER 6: Weapons

Note This chapter assumes you’re resuming work from where we left off in the previous; or else you can

begin from the starting project associated with this chapter, included in the book companion files inside folder

Chapter06/Start.

Figure 6-2. The collectable gun weapon

	Fists/punch. Perhaps the most common default weapon in any FPS shooter

(as well as the weakest) is the fists/punch. The fists/punch is the “old reliable”

weapon: short-ranged, weak, and typically used only as a last resort—when

all other weapons have expired. The main advantage of the fists/punch is their

infinite reusability: they never run out of ammo, simply because they’re not

the kind of weapon to require ammo. In CMOD, the Player begins with the

fists/punch weapon.

	Gun. Now, if the gamer is smart or just very, very lucky, then he’ll collect the

gun weapon, which is a marked improvement over the fists/punch. The gun

allows ranged attack and deals heavier damage than fists/a punch. But, its

ammo is limited. This means, it has a finite number of uses. After all bullets have

been fired, the weapon expires and remains unusable—unless more ammo is

collected. If the gun expires, the gamer must resort to the next best weapon,

which will be fists/punch in our work here, since we’re only making

two weapons.

Object Orientation: Classes and Instances
This book assumes you’re already familiar with the basics of C# and coding in Unity. Part of that

fundamental knowledge includes a general understanding of objects and object orientation. Indeed,

we’ve already made extensive use of these concepts in creating many classes over previous

chapters, such as classes for events, power-ups, and player controllers. But before proceeding

further, let’s revisit object orientation to reinforce our understanding. Object orientation will be critical

for our work with weapons.

181CHAPTER 6: Weapons

Object orientation begins with the concept of a class. But what exactly is that? Of course, we’ve coded

classes before in previous chapters using C# script files—and they all worked! But it’s important to

understand more deeply the mechanics or underpinning philosophy of how it works. It’s not enough

to follow along with examples in a book and to copy and paste code. In short, a class is an abstract or

template entity—something that exists in theory or in principle. We when look at the world around us,

the analytical mind restlessly breaks things down into neat categories or groups in search of a deeper

understanding. We don’t just observe a random flux of atoms; instead, we see tables, and chairs, and

trees, and people, and discrete objects that have clear beginnings and endings. We recognize all these

things when we see them because of a general or abstract picture we hold in our minds.

For example, we recognize a table when we see one, because we have an abstract understanding

of a table. That is, we know enough about everything tables have in common to recognize individual

instances of a table when we see them in the real world. There is, in our minds, a general template

or pattern of an ideal table. And this helps us to recognize particular real-world tables when we see

them. The ideal table is a class. And the real-world specific tables are instances or instantiations of

that class. In Unity, classes are defined in script files. Instances are made in the scene by way of

components—that is, classes are instantiated in the scene as components on a game object. We

just drag and drop scripts into the scene to make instantiations. Now, perhaps none of this is news

to you—you may already know about objects and instances, but everything we’ve said so far poses

a logistical problem for us when creating weapons. Let’s see what that is.

Object Orientation: Inheritance
CMOD supports two weapon types, as we’ve seen. This immediately suggests that we need to

create two separate C# classes: one for the fists/punch (Weapon_Punch.cs) and another for the

gun (Weapon_Gun.cs). This is correct, but a problem introduces itself regarding code and feature

duplication. The problem is that although the fist and gun weapons are separate and distinct objects,

there are still many similarities between the weapon types. Specifically, both are weapons, both deal

a specified amount of damage to enemies, both have a recovery rate (the amount of time that should

elapse before the weapon can be reused after being fired), and both have a range (the distance from

the enemy at which the weapon is effective). These are numerous and significant features held in

common, and not just across the two weapons we’re creating for CMOD in this book, but across

almost all weapons imaginable. We could, of course, disregard these similarities entirely and simply

jump into implementing our weapons straightaway, coding these properties for each weapon. This

approach, however, is inefficient because it means we’re adding the same kinds of properties to two

separate classes. We’re unnecessarily duplicating our workload and increasing the size of our code.

Instead, we can solve this problem using class inheritance to develop a base class for all weapons.

Whenever we identify two separate classes—X and Y—that share lots of behavior and functionality

in common, we’ve usually found good candidates for inheritance. Class inheritance allows you to

create a third class, Z, known as a base class, which defines all behaviors common to X and Y.

The classes X and Y (subclasses) can then inherit that functionality from the base class Z, to save

you having to code it twice, once for X and again for Y. Base class Z is therefore a distillation of all

commonalities between X and Y. It’s not a class intended to be instantiated on its own. Its purpose

is to be inherited by other classes that wish to reuse and recycle its behavior as though it were their

own. This kind of class is more formally known as an abstract base class. So, let’s start coding

the Player weapons here, with the base class (see Listing 6-1, which demonstrates a base class

Weapon.cs; comments follow).

182 CHAPTER 6: Weapons

Listing 6-1. Weapon.cs: Abstract Base Class for Player Weapons

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Weapon : MonoBehaviour
06 {
07 //Custom enum for weapon types
08 public enum WEAPON_TYPE {Punch=0, Gun=1};
09
10 //Weapon type
11 public WEAPON_TYPE Type = WEAPON_TYPE.Punch;
12
13 //Damage this weapon causes
14 public float Damage = 0.0f;
15
16 //Range of weapon (linear distance outwards from camera) measured in world units
17 public float Range = 1.0f;
18
19 //Amount of ammo remaining (-1 = infinite)
20 public int Ammo = -1;
21
22 //Recovery delay
23 //Amount of time in seconds before weapon can be used again
24 public float RecoveryDelay = 0.0f;
25
26 //Has this weapon been collected?
27 public bool Collected = false;
28
29 //Is this weapon currently equipped on player
30 public bool IsEquipped = false;
31
32 //Can this weapon be fired
33 public bool CanFire = true;
34
35 //Next weapon in cycle
36 public Weapon NextWeapon = null;
37 }

	Line 05. Notice that practically any class definition in Unity always involves

inheritance. Even our abstract base class Weapon derives from MonoBehaviour,

a Unity API class used as a base for Components. Other weapon classes, such

as Fists/Punch and Gun will derive from Weapon. This means there are multiple

chains of inheritance happening here: Guns ➤ Weapon ➤ MonoBehaviour. And

even MonoBehaviour derives from Behaviour, which derives from Component,

which finally derives from Object—an ultimate ancestor class.

183CHAPTER 6: Weapons

Note More information on the ultimate API ancestor class, Object, can be found online in the Unity

documentation at https://docs.unity3d.com/Documentation/ScriptReference/Object.html.

	Lines 14, 17, 20, and 24. These public class variables define Damage, Range,

Ammo, and RecoveryDelay properties. Every weapon deals damage to an Enemy

within its range, and can be used only so long as there is sufficient ammo

remaining. Once used, however, there is a short recovery/delay time (measured

in seconds) during which the Player cannot fire again. He must instead wait for

the recovery period to expire before a second attack may be made. This is to

simulate real-world recovery times when using weapons.

	Line 27. This is a Boolean determining whether the weapon has been collected by

the Player. For all weapons except fists/punch, this value should begin as false.

	Line 30. This Boolean specifies whether a collected weapon is currently active

and being used by the Player right now. Consequently, only one weapon may

have this flag set to true at any one time.

	Line 33. CanFire is a Boolean describing whether the collected and equipped

weapon can be fired right now. If this is false, then it’s because the weapon

RecoveryDelay has not yet expired.

So how would we inherit two new weapons from this abstract base class? Simply by creating two

new script files, one for each new weapon, and specifying the Weapon class as the ancestor, instead of

MonoBehaviour. In doing this, both classes inherit all Weapon behavior and functionality: that is, Weapon

public properties also become public properties for the derived classes (see Listings 6-2 and 6-3 for

Weapon_Punch.cs and Weapon_Gun.cs, respectively, configured for inheritance and ready for further

refinement and coding).

Listing 6-2. Weapon_Punch.cs: Punch Weapon Derived from Weapon Base Class

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Weapon_Punch : Weapon
06 {
07 }

Listing 6-3. Weapon_Gun.cs: Gun Weapon Derived from Weapon Base Class

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Weapon_Gun : Weapon
06 {
07 }

https://docs.unity3d.com/Documentation/ScriptReference/Object.html

184 CHAPTER 6: Weapons

Animations, Frames, and Prefabs
Before moving further, refining the derived gun classes to implement extended and specialized

functionality for each weapon, we’ll take a detour into animation. This might initially seem a misplaced

detour. But animation will play an important role for our two weapon classes, because both must

display a fire or attack animation each time the weapon is used. Consider Figures 6-1 and 6-2,

which show not only each weapon, but also the frames of animation that should play when fired.

When the gamer presses the Fire button, we’ll want the active weapon to cycle through its frames of

animation, returning back to the original, neutral frame when completed. To achieve this, a new class

must be coded. Specifically, this class will accept an array of sprite objects in the scene (each sprite

representing a single frame in an animation sequence) and it will hide and show all related sprites

(frames) in sequence to play back the complete animation, frame by frame. Take a look at the class in

Listing 6-4, called SpriteShowAnimator.cs. Comments follow.

Listing 6-4. SpriteShowAnimator.cs: Class to Display a Sprite Animation

01 //This class maintains a collection of sprite objects as frames of animation
02 //It shows and hides those frames according to a set of playback settings
03 //--
04 using UnityEngine;
05 using System.Collections;
06 //--
07 public class SpriteShowAnimator : MonoBehaviour
08 {
09 //--
10 //Playback types - run once or loop forever
11 public enum ANIMATOR_PLAYBACK_TYPE {PLAYONCE = 0, PLAYLOOP = 1};
12
13 //Playback type for this animation
14 public ANIMATOR_PLAYBACK_TYPE PlaybackType = ANIMATOR_PLAYBACK_TYPE.PLAYONCE;
15
16 //Frames per second to play for this animation
17 public int FPS = 5;
18
19 //Custom ID for animation - used with function PlaySpriteAnimation
20 public int AnimationID = 0;
21
22 //Frames of animation
23 public SpriteRenderer[] Sprites = null;
24
25 //Should auto-play?
26 public bool AutoPlay = false;
27
28 //Should first hide all sprite renderers on playback? or leave at defaults
29 public bool HideSpritesOnStart = true;
30
31 //Boolean indicating whether animation is currently playing
32 bool IsPlaying = false;

185CHAPTER 6: Weapons

33 //--
34 void Start()
35 {
36 //Should we auto-play at start up?
37 if(AutoPlay){StartCoroutine(PlaySpriteAnimation(AnimationID));}
38 }
39 //--
40 //Function to run animation
41 public IEnumerator PlaySpriteAnimation(int AnimID = 0)
42 {
43 //Check if this animation should be started. Could be called via SendMessage or

BroadcastMessage
44 if(AnimID!= AnimationID) yield break;
45
46 //Should hide all sprite renderers?
47 if(HideSpritesOnStart)
48 {
49 foreach(SpriteRenderer SR in Sprites)
50 SR.enabled = false;
51 }
52
53 //Set is playing
54 IsPlaying = true;
55
56 //Calculate delay time
57 float DelayTime = 1.0f/FPS;
58
59 //Run animation at least once
60 do
61 {
62 foreach(SpriteRenderer SR in Sprites)
63 {
64 SR.enabled = !SR.enabled;
65 yield return new WaitForSeconds(DelayTime);
66 SR.enabled = !SR.enabled;
67 }
68 }
69 while(PlaybackType == ANIMATOR_PLAYBACK_TYPE.PLAYLOOP);
70
71 //Stop animation
72 StopSpriteAnimation(AnimationID);
73 }
74 //--
75 //Function to stop animation
76 public void StopSpriteAnimation(int AnimID = 0)
77 {
78 //Check if this animation can and should be stopped
79 if((AnimID!= AnimationID) || (!IsPlaying)) return;
80
81 //Stop all coroutines (animation will no longer play)
82 StopAllCoroutines();
83

186 CHAPTER 6: Weapons

84 //Is playing false
85 IsPlaying = false;
86
87 //Send Sprite Animation stopped event to gameobject
88 gameObject.SendMessage("SpriteAnimationStopped", AnimID,

SendMessageOptions.DontRequireReceiver);
89 }
90 //--
91 }

	Line 23. The public array member Sprites references a collection of

SpriteRenderer components in the scene, together representing all frames for

an animation. The order of the SpriteRenderers in the array is important; the

order defines the direction and flow of the animation, with the first element

corresponding to the first frame, and the last element to the last frame. Notice

how this animation class works: it accepts a collection of preinstantiated

SpriteRenderers in the scene, and shows or hides them during animation

playback—showing only the current and active frame, while hiding all other

frames. This animation class will not edit or adjust sprite UVs.

	Line 17. The FPS public member defines the animation speed. Specifically,

it defines the number of sprites in the array SpriteRenderer that should be

processed (or shown) per second during animation playback.

	Line 41. The PlaySpriteAnimation coroutine should be called to start animation

playback. If the member PlaybackType is set to PLAYLOOP, the coroutine will

repeat endlessly unless StopSpriteAnimation is called.

Let’s now put this animation class to the test by assembling a new weapon Prefab object in the

scene, starting with the fists/punch weapon. To do this, I’ll drag the four punch sprite frames from

the atlas texture into the scene (each a unique frame of animation for the fists/punch weapon),

making sure all sprites are positioned at exactly the same world position, overlapping one another.

The sprites are Spr_Punch_01, Spr_Punch_02, Spr_Punch_03, and Spr_Punch_04. Overlapping

their position is important to maintain frame consistency across the animation. It doesn’t matter

for appearances that the sprites overlap, since only one sprite will be shown at any one time

(see Figure 6-3). The sprites will probably appear huge in comparison to the rest of the scene.

Don’t worry about this for now; we’ll fix it later.

187CHAPTER 6: Weapons

Now parent all frame objects under a new, empty game object (Weapon_Punch). To this object, add

the SpriteShowAnimator component and define the animation as shown in Figure 6-4. I’ve specified

a Playback Type of loop for now, simply for testing purposes to observe the sprite animation in the

Scene viewport, playing back endlessly as opposed to just once. For the final weapon prefab, the

playback type will be set to PlayOnce, since an animation should play only once for each attack.

Give this configuration a test to see the animation in action.

Figure 6-3. Adding the punch sprite frames into the scene; preparing to create a punch weapon prefab

188 CHAPTER 6: Weapons

Note Remember, all code in this chapter is included in the book companion files at

Chapter06/AssetsToImport/.

Figure 6-4. Playing the attack animation

Cameras: Layers and Rendering
If you take a look at Figures 6-3 and 6-4, you’ll likely see a potential problem emerging for the Player

weapons. Specifically, the Player weapons (whether a fists/punch or a gun) should (1) always appear

at the screen middle-bottom, and (2) appear at a consistent and believable size (see Figure 6-5

for an example). Right now, Figures 6-3 and 6-4 show just how large the weapon sprites appear in

relation to the scene. And if the scene is played right now, the weapons are not appropriately aligned

on the screen either. Let’s address the second problem first.

189CHAPTER 6: Weapons

No matter where the First Person Controller moves or looks in the scene during gameplay,

the gun sprite should always follow, being aligned to the bottom-middle of the screen, exactly

where we’d expect to find the Player’s hand holding a weapon. There are many ways to achieve

this functionality: you could, for example, use GameObject parenting to create transformation

dependencies. But in this chapter, we’ll use a layered camera technique, effectively rendering

all scene geometry from the default first-person camera, and the weapon from a second and

orthographic camera layered on top of the original rendering. To get started, I’ll adjust the scene

hierarchy somewhat for clearer organization.

Specifically, I’ll create a new GameObject (called Weapons), adding this as a child of the Player

object, and then add a new Camera object (WeaponCamera) as a child of the Weapons object, and

finally, I’ll add the Weapon_Punch object as a child of WeaponCamera. In addition, I’ll also remove

all components from the Camera object (including the AudioListener), leaving only the Camera

component (see Figure 6-6 for clarification on this process).

Figure 6-5. Weapons should appear at a consistent size and at the bottom-middle of the screen

Figure 6-6. Housekeeping game objects and creating a second camera

190 CHAPTER 6: Weapons

Note Cameras are created by selecting GameObject ➤ Create Other ➤ Camera from the

application menu.

After adding a second camera, change its Projection Type from Perspective to Orthographic.

Perspective cameras are useful for rendering 3D geometry in which objects are seen in perspective;

distant objects appear smaller and objects further to the camera edges are distorted from

foreshortening. Orthographic cameras, in contrast, are useful for rendering 2D graphics drawn

directly in screen space, such as 2D weapon sprites. After changing the camera projection, translate

the camera (along with its children) outside the main scene area—at a distance where it doesn’t

collide with or intersect scene geometry. It doesn’t ultimately matter where it’s moved; this step is

mainly for our benefit, to avoid confusion with other game objects and to facilitate easier selection

from the viewport (see Figure 6-7). Notice that I’ve adjusted the punch sprites to be in view of the

camera, as shown in the camera preview window.

Figure 6-7. Configuring a 2D camera for rendering weapon sprites

The camera is now almost configured for rendering the weapon punch sprites. But, if you play

the game right now, you’ll still see only the First Person Controller camera being rendered, and

not the newly created weapon camera. From appearances, the user would never know a second

camera existed, and the weapon sprites are not even layered on top of the initial rendering as we

want them to be. To fix this, change the WeaponCamera Depth property to 1, and the Clear Flags

191CHAPTER 6: Weapons

property to Depth Only, as shown in Figure 6-8. The MainCamera on the First Person Controller

has a default Depth property of 0. Cameras with higher depth values are layered on top of lower-

order ones. The Clear Flags property defines how the camera background should be rendered:

Depth Only renders the background as transparent and allows the First Person Controller camera

to appear beneath the WeaponCamera (see Figure 6-8).

Figure 6-8. Layering the weapon camera onto of the scene camera using the Depth and Clear Flag properties

Configuring the camera this way is not all we should do, however. Although the layered weapon camera

now renders weapon sprites on top of the first-person camera, as we intended, it will still render any

scene geometry and other objects, if they ever come into its view. This could produce confusing results

leading to scene geometry being rendered twice or strange overlapping scenarios, depending entirely

on what enters the camera view. To restrict the WeaponCamera to render only weapon sprites, and

nothing else, we can use layers. Taking this extra precaution is highly recommended. Start by creating

a new layer (weapon_layer), and assigning all weapon sprites to it from the Object Inspector. Layers

are created from the Tags and Layers menu, accessed by selecting Add New Layer from the Layer

drop-down menu at the top-right corner of the Object Inspector (see Figure 6-9).

192 CHAPTER 6: Weapons

After creating the layer, assign all Weapons objects to it. This can be achieved in just one cascaded

operation, by selecting the root Weapons object, beneath the Player object, and assigning it to the

weapon_layer, allowing the assignment to be applied to all child objects downward in the hierarchy

(see Figure 6-10).

Figure 6-9. Creating a weapon camera layer to restrict camera rendering to weapon objects

Figure 6-10. Assigning Weapon objects to a render layer

Finally, the WeaponCamera can be configured to render only from the weapon_layer, through the

CullingMask member. Select CullingMask from the Object Inspector, picking only the weapon_layer

from the drop-down (see Figure 6-11). Once selected, this restricts rendering to only the selected layer.

193CHAPTER 6: Weapons

Good work! Progress is being made. But still, the punch weapon is probably not looking quite right.

Perhaps it’s not positioned where you want it to be, and it’s probably not the size you need either

(see Figure 6-12). You could, of course, use the Scale tool to up- or downsize the objects by eye,

but sometimes you’ll need pixel precision for extra control. We’ll explore that next.

Figure 6-11. Restricting camera rendering using Culling Masks

Figure 6-12. Almost there! But the punch weapon is not rendered at an appropriate size. Too small!

194 CHAPTER 6: Weapons

Cameras: Orthographic Size
Perhaps the most common question I’m asked about 2D development in Unity is, “How can I make

a sprite appear on-screen at its true pixel size, minus all perspective distortion?” This question is,

in essence, about pixel perfection. Perhaps you’ve created an image in Photoshop or GIMP, and

you want it to display in an orthographic camera at exactly the same size as the image file—pixel

for pixel. This section explores this issue as we scale and size the punch weapon to fit the weapon

camera. In short, the ultimate render size of an orthographic camera is controlled using the Size

member—although this member works in conjunction with other settings, as we’ll see. This member

determines how world units relate to pixels (see Figure 6-13).

Figure 6-13. The size member of orthographic cameras controls the size of graphical elements on-screen

The main question for a developer interested in achieving pixel perfection from orthographic

cameras is, “What value should size be for an orthographic camera?” To achieve a 1:1 ratio between

world units and pixels, the size value should be half the vertical height of the game window in pixels

(That is: Size = pxHeight/2). Thus, for games with a resolution of 1024×768, a size value of 384

(768/2) is correct. This seems simple enough: but give it a try for CMOD.

There’s a problem. Even if we set the camera size to 384 and the resolution to 1024×768 from the

Game tab, the weapon sprite appears too small—it’s barely visible. We know something is wrong

because the game texture size is 4096×4096 pixels, and the punch weapon within that texture has

been explicitly sized for a 1920×1080 HD display. This means, the weapon should appear much larger

than it does with a camera setting of 384, where 1 unit should equate to 1 pixel (see Figure 6-14).

So what’s wrong?

195CHAPTER 6: Weapons

The answer is, by default, Unity applies additional scaling to all 2D sprites. To examine this, select the

main texture in the Project panel and examine the Pixels to Units field in the Object Inspector. For the

CMOD texture, this value is 200. This means all sprites are scaled automatically such that 200 texels

(texture pixels) are mapped to 1 world unit. For this reason, a 1:1 orthographic size for a camera will

render the sprites and textures 200 times too small for pixel perfection. Therefore, to create pixel-perfect

mapping, we’ll need to revise the orthographic size formula to: Size = pxHeight/2/SpriteScale. Thus,

for a 1024×768 game, it should be 768 / 2 / 200. Take a look at Figure 6-15, where things are looking

better, and pixel-perfect. But don’t celebrate just yet! There’s still an issue to resolve . . .

Figure 6-15. Pixel-perfect weapons!

Figure 6-14. Weapon sprite too small at 1:1 orthographic size

196 CHAPTER 6: Weapons

The problem that exists now is that despite being pixel perfect, the punch weapon appears too

large for the resolution of 1024×768. But even if you change the resolution to 1920×1080, the punch

weapon appears too large to the same degree. This is because the orthographic size is resolution

dependent. If we change the resolution from one size to another, we’ll also need to recalculate the

Size value. If we don’t, then the Size value always scales the graphics at that size to fit the target

resolution, whatever it may be. This gives us a critical clue to achieving a certain kind of resolution

independence for CMOD. Since we know the weapon should show pixel-perfect at 1920×1080,

the size should be set to 1080 / 2 / 200. By using and keeping this value, regardless of the game

resolution, we’ll always know the Player’s weapons will appear at the correct size and scale

(see Figure 6-16). Of course, this can involve a nonuniform scaling issue concerning aspect ratio.

We’ll return to that issue later in the book, in Chapter 8, when considering GUIs.

Figure 6-16. Weapons now display correctly

Note Repeat this process for the gun weapon, too.

Weapon Implementation: Punching
Let’s now return to the specific implementation of the punch weapon (Weapon_Punch.cs), which

we started coding earlier in the chapter, in Listing 6-2. Now that we’ve coded a sprite animation

component, as well as configured the weapon sprites to render correctly for an orthographic

camera, we can make progress. Sometimes, like here, it’s helpful to develop multiple classes in

parallel, jumping back and forth, testing their interoperability. Take care when doing this, however, as

interoperability between classes can lead to dependency injection. In other words, it can lead you to

create inhibiting and unnecessary dependences between classes, leaving your code scattered across

multiple source files, so that it’s difficult to ever change one of the classes in isolation. When that

happens, changing the implementation of one class has implications for the other dependencies, and

so on. This can cause a nightmare of spaghetti logic. Try, wherever possible, to make your classes as

197CHAPTER 6: Weapons

independent and self-contained as possible. Achieving this is actually easier said than done; but with

patience and practice, it gets a lot easier to spot ways of doing it.

Right now, if you’ve been following along with the chapter, the punch weapon simply plays a

relatively simple punch animation on a loop, just for testing purposes. But the weapon should really

do more than this for the final game. Specifically, the punch weapon should remain in an idle state,

displaying an attack animation only when the gamer manually launches an attack by pressing the

Fire button. When this happens, the weapon should also determine whether an Enemy has been hit

and, if so, to apply damage. Take a look at Listing 6-5; comments follow.

Listing 6-5. Weapon_Punch.cs: Adding Attack Functionality to the Punch Weapon

001 //--
002 using UnityEngine;
003 using System.Collections;
004 //--
005 //Inherits from Weapon class
006 public class Weapon_Punch : Weapon
007 {
008 //--
009 //Default Sprite to show for weapon when active and not attacking
010 public SpriteRenderer DefaultSprite = null;
011
012 //Sound to play on attack
013 public AudioClip WeaponAudio = null;
014
015 //Audio Source for sound playback
016 private AudioSource SFX = null;
017
018 //Reference to all child sprite renderers for this weapon
019 private SpriteRenderer[] WeaponSprites = null;
020 //--
021 void Start()
022 {
023 //Find sound object in scene
024 GameObject SoundsObject = GameObject.FindGameObjectWithTag("sounds");
025
026 //If no sound object, then exit
027 if(SoundsObject == null) return;
028
029 //Get audio source component for sfx
030 SFX = SoundsObject.GetComponent<AudioSource>();
031
032 //Get all child sprite renderers for weapon
033 WeaponSprites = gameObject.GetComponentsInChildren<SpriteRenderer>();
034 }
035 //--
036 // Update is called once per frame
037 void Update ()
038 {
039 //If not equipped then exit
040 if(!IsEquipped) return;
041

198 CHAPTER 6: Weapons

042 //If cannot accept input, then exit
043 if(!GameManager.Instance.InputAllowed) return;
044
045 //Check for fire button input
046 if(Input.GetButton("Fire1") && CanFire)
047 StartCoroutine(Fire());
048 }
049 //--
050 //Coroutine to fire weapon
051 public IEnumerator Fire()
052 {
053 //If can fire
054 if(!CanFire || !IsEquipped) yield break;
055
056 //Set refire to false
057 CanFire = false;
058
059 //Play Fire Animation
060 gameObject.SendMessage("PlaySpriteAnimation", 0,

SendMessageOptions.DontRequireReceiver);
061
062 //Calculate hit
063
064 //Get ray from screen center target
065 Ray R = Camera.main.ScreenPointToRay(new Vector3(Screen.width/2,

Screen.height/2,0));
066
067 //Test for ray collision
068 RaycastHit hit;
069
070 if(Physics.Raycast(R.origin, R.direction, out hit, Range))
071 {
072 //Target hit - check if target is enemy
073 if(hit.collider.gameObject.CompareTag("enemy"))
074 {
075 //Play collection sound, if audio source is available
076 if(SFX){SFX.PlayOneShot(WeaponAudio, 1.0f);}
077
078 //Send damage message (deal damage to enemy)
079 hit.collider.gameObject.SendMessage("Damage",Damage,

SendMessageOptions.DontRequireReceiver);
080 }
081 }
082
083 //Wait for recovery before re-enabling CanFire
084 yield return new WaitForSeconds(RecoveryDelay);
085
086 //Re-enable CanFire
087 CanFire = true;
088 }

199CHAPTER 6: Weapons

089 //--
090 //Called when animation has completed playback
091 public void SpriteAnimationStopped()
092 {
093 //If not equipped then exit
094 if(!IsEquipped) return;
095
096 //Show default sprite
097 DefaultSprite.enabled = true;
098 }
099 //--
100 }

Note Notice that, due to class inheritance, the Weapon_Punch class is using inherited variables, such as

CanFire, as though they were its own. No declaration for them is provided in the Weapon_Punch.cs file.

	Line 10. The DefaultSprite public variable refers a SpriteRenderer component

to be used as the default, idle state for the weapon. This value should be

specified from the Unity Editor, via the Object Inspector, before running the

code. In short, whenever the weapon is equipped but not being fire, the

DefaultSprite will show at the bottom-middle of the screen.

	Line 46. Notice that gamer input is read using a virtual button with the

Input.GetButton function, as opposed to reading directly from the keyboard

with Input.GetKeyDown. This allows input mapping to be changed without

breaking the code—a great technique for allowing the gamer customizable

controls.

	Line 51. The Fire behavior is coded as a coroutine for resetting the CanFire

variable back to true after the recovery delay.

	Line 59. The punch animation is initiated by sending a message to the

GameObject with SendMessage. This allows animation playback using the

SpriteAnimator component without the Weapon class ever needing to know the

data type or interface details of the SpriteAnimator! SendMessage is sometimes a

great way to establish relationships and interaction between classes. But it does

have performance implications, which are considered in the last chapter.

Physics and Damage Dealing
In Listing 6-5, the Weapon class (Weapon_Punch.cs) responded to gamer input and applies damage to

enemies within range of an attack whenever an attack is launched. The specific details of detecting

whether an Enemy is hit is handled using the physics system, and covers lines 62–82. These are

reproduced in Listing 6-6 and warrant further discussion.

200 CHAPTER 6: Weapons

Listing 6-6. Detecting Enemy Hits

062 //Calculate hit
063
064 //Get ray from screen center target
065 Ray R = Camera.main.ScreenPointToRay(new Vector3(Screen.width/2,

Screen.height/2,0));
066
067 //Test for ray collision
068 RaycastHit hit;
069
070 if(Physics.Raycast(R.origin, R.direction, out hit, Range))
071 {
072 //Target hit - check if target is enemy
073 if(hit.collider.gameObject.CompareTag("enemy"))
074 {
075 //Play collection sound, if audio source is available
076 if(SFX){SFX.PlayOneShot(WeaponAudio, 1.0f);}
077
078 //Send damage message (deal damage to enemy)
079 hit.collider.gameObject.SendMessage("Damage",Damage,

SendMessageOptions.DontRequireReceiver);
080 }
081 }
082

Collision detection and damage dealing begins by constructing a ray. A ray is a mathematical

structure representing an imaginary straight line, projected from the screen into the scene space

ahead. In our case, the ray will act as an imaginary beam cast outward from the tip of our weapon

(assumed to be screen-center). Line 65 uses the Unity camera function ScreenPointToRay to

construct a ray that begins from the screen center and is projected forward, away from the camera

and inward into the scene.

Note More information on ScreenPointToRay can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Camera.ScreenPointToRay.html.

After a ray has been constructed and cast into the scene, the Physics.Raycast function is used

to access the first collidable GameObject intersecting the ray. This object is the nearest collidable

object to us.

Note More information on Physics.Raycast can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/Physics.Raycast.html.

http://docs.unity3d.com/Documentation/ScriptReference/Camera.ScreenPointToRay.html
http://docs.unity3d.com/Documentation/ScriptReference/Physics.Raycast.html

201CHAPTER 6: Weapons

Finally, line 73 validates whether the nearest hit object was an Enemy by using its tag (enemy

implementation is considered in the next chapter). Notice from line 79 that damage is applied to the

enemy using a SendMessage function, creating a degree of independence between the weapon and

enemy classes, because the weapon class needs knowledge of the enemy data type or interface

specifics. We just send the enemy object a SendMessage command.

Now go ahead and take this component for a test ride (see Figure 6-17 for the component settings

I’ve used). You should not have a functional punch weapon. Although this chapter has covered only

the punch weapon so far, the gun weapon can be created using almost the same approach. The

crucial difference between the punch and the gun rests in having finite ammo, the weapon range,

and the damage inflicted.

Figure 6-17. BLAM! The punch weapon in action!

Weapon Changing and Polymorphism
As soon as the Player collects more than one weapon, he’ll want the ability to change or cycle

between them on demand. Doing this requires some coding changes both to the weapon

classes and to the PlayerController class, and we’ll see an Object Orientation feature, known

as polymorphism, at work. The PlayerController will need to maintain a list of collected weapons

and make only one of them active for the Player at any one time. The weapons too will need to

be notified when they have become the active weapon and when deactivated. Before proceeding

further, however, this section assumes you have both a fists/punch and a gun weapon configured,

with their sprites set up to render in an orthographic camera (see Figure 6-18 for the GameObject

setup that I’m using). Remember, you can always load up the Start or End projects included in the

book files to follow along (found in Chapter06/Start and Chapter06/End).

202 CHAPTER 6: Weapons

To implement weapon changing for the PlayerController, consider the revised controller class in

Listing 6-7, with changes highlighted in bold. Remember, the PlayerController class was first

created in the previous chapter. Comments follow.

Listing 6-7. PlayerController.cs: Revised PlayerController Class with Weapon Switching Implemented

001 //--
002 using UnityEngine;
003 using System.Collections;
004 using System.Collections.Generic;
005 //--
006 public class PlayerController : MonoBehaviour
007 {
008 //--
009 //Amount of cash player should collect to complete level
010 public float CashTotal = 1400.0f;
011
012 //Amount of cash for this player
013 private float cash = 0.0f;
014
015 //Reference to transform
016 private Transform ThisTransform = null;
017
018 //Respawn time in seconds after dying
019 public float RespawnTime = 2.0f;
020
021 //Player health
022 public int health = 100;
023
024 //Get Mecanim animator component in children
025 private Animator AnimComp = null;
026

Figure 6-18. Preparing to create weapon-change functionality. Notice that I’ve hidden all sprite renderers for the gun, to prevent

multiple frames showing at the same time. The PlayerController and Weapon classes handle which sprites should be shown,

and when

203CHAPTER 6: Weapons

027 //Private damage texture
028 private Texture2D DamageTexture = null;
029
030 //Screen coordinates
031 private Rect ScreenRect;
032
033 //Show damage texture?
034 private bool ShowDamage = false;
035
036 //Damage texture interval (amount of time in seconds to show texture)
037 private float DamageInterval = 0.2f;
038
039 //Default player weapon (Punch)
040 public Weapon DefaultWeapon = null;
041
042 //Currently active weapon
043 public Weapon ActiveWeapon = null;
044 //--
045 //Called when object is created
046 void Start()
047 {
048 //Register controller for weapon expiration events
049 GameManager.Notifications.AddListener(this, "AmmoExpired");
050
051 //Activate default weapon
052 DefaultWeapon.gameObject.SendMessage("Equip", DefaultWeapon.Type);
053
054 //Set active weapon
055 ActiveWeapon = DefaultWeapon;
056
057 //Get First person capsule and make non-visible
058 MeshRenderer Capsule = GetComponentInChildren<MeshRenderer>();
059 Capsule.enabled = false;
060
061 //Get Animator
062 AnimComp = GetComponentInChildren<Animator>();
063
064 //Create damage texture
065 DamageTexture = new Texture2D(1,1);
066 DamageTexture.SetPixel(0,0,new Color(255,0,0,0.5f));
067 DamageTexture.Apply();
068
069 //Get cached transform
070 ThisTransform = transform;
071 }
072 //--
073 //Accessors to set and get cash
074 public float Cash
075 {
076 //Return cash value
077 get{return cash;}
078

204 CHAPTER 6: Weapons

079 //Set cash and validate, if required
080 set
081 {
082 //Set cash
083 cash = value;
084
085 //Check collection limit - post notification if limit reached
086 if(cash >= CashTotal)
087 GameManager.Notifications.PostNotification(this, "CashCollected");
088 }
089 }
090 //--
091 //Accessors to set and get health
092 public int Health
093 {
094 //Return health value
095 get{return health;}
096
097 //Set health and validate, if required
098 set
099 {
100 health = value;
101
102 //Playe Die functionality
103 if(health <= 0) gameObject.SendMessage("Die",SendMessageOptions.

DontRequireReceiver);
104 }
105 }
106 //--
107 //Function to apply damage to the player
108 public IEnumerator ApplyDamage(int Amount = 0)
109 {
110 //Reduce health
111 Health -= Amount;
112
113 //Post damage notification
114 GameManager.Notifications.PostNotification(this, "PlayerDamaged");
115
116 //Show damage texture
117 ShowDamage = true;
118
119 //Wait for interval
120 yield return new WaitForSeconds(DamageInterval);
121
122 //Hide damage texture
123 ShowDamage = false;
124 }
125 //--
126 //ON GUI Function to show texture
127 void OnGUI()
128 {
129 if(ShowDamage){GUI.DrawTexture(ScreenRect,DamageTexture);}
130 }

205CHAPTER 6: Weapons

131 //--
132 //Function called when player dies
133 public IEnumerator Die()
134 {
135 //Disable input
136 GameManager.Instance.InputAllowed = false;
137
138 //Trigger death animation if available
139 if(AnimComp) AnimComp.SetTrigger("ShowDeath");
140
141 //Wait for respawn time
142 yield return new WaitForSeconds(RespawnTime);
143
144 //Restart level
145 Application.LoadLevel(Application.loadedLevel);
146 }
147 //--
148 void Update()
149 {
150 //Build screen rect on update (in case screen size changes)
151 ScreenRect.x = ScreenRect.y = 0;
152 ScreenRect.width = Screen.width;
153 ScreenRect.height = Screen.height;
154
155 if(Input.GetKeyDown(KeyCode.Period))
156 EquipNextWeapon();
157 }
158 //--
159 //Equip next available weapon
160 public void EquipNextWeapon()
161 {
162 //No weapon found yet
163 bool bFoundWeapon = false;
164
165 //Loop until weapon found
166 while(!bFoundWeapon)
167 {
168 //Get next weapon
169 ActiveWeapon = ActiveWeapon.NextWeapon;
170
171 //Activate weapon, if possible
172 ActiveWeapon.gameObject.SendMessage("Equip", ActiveWeapon.Type);
173
174 //Is successfully equipped?
175 bFoundWeapon = ActiveWeapon.IsEquipped;
176 }
177 }

206 CHAPTER 6: Weapons

178 //--
179 //Event called when ammo expires
180 public void AmmoExpired(Component Sender)
181 {
182 //Ammo expired for this weapon. Equip next
183 EquipNextWeapon();
184 }
185 //--
186 }

	Lines 40 and 43. There are some important features in this code. First, notice

that PlayerController supports weapon switching between both weapon

types, and yet it never references any one of the derived classes directly, either

Weapon_Punch or Weapon_Gun. It uses the super-class Weapon to reference weapon

objects.

	Lines 160–185. This is where the core functionality of weapon-switching occurs.

When the gamer presses the period (.) key on the keyboard, and is carrying

more than one eligible weapon, the active weapon is switched to the next. This

is achieved using the NextWeapon variable coded into the Weapon class. This

value should be specified in the Object Inspector for all weapons, allowing any

weapon to reference the next weapon in the cycle. For our purposes, the punch

weapon refers to the gun as its next. And further, because we wanted to cycle

around the weapons in a loop, the gun refers back to the punch weapon as its

next. But notice again (lines 169 and 175) that the EquipNextWeapon function

works with the Weapon super-class and not any of its derivatives.

Both comments for Listing 6-7 point to polymorphism at work. In short, whenever multiple classes

derive from a common ancestor class using inheritance, such as the weapon classes deriving from

Weapon, you can still loop through and work with those classes together by using only references

to their base or ancestor class (see lines 166–176). This means that PlayerController can

maintain a complete array of different weapon types, using only the base type Weapon. Because

of polymorphism, C# sees only the commonalities between these classes through their ancestor,

seeing them as being fundamentally alike and interchangeable, and it ignores their differences

implemented from deriving. The practical value of this means that many different objects, regardless

of their type, can be treated alike if they share a common ancestor class somewhere in their lineage.

It becomes possible to loop through and iterate over objects of multiple types stored together in a

single array of only one type.

Note For more information on polymorphism, see the MSDN C# documentation at

http://msdn.microsoft.com/en-us/library/ms173152.aspx.

http://msdn.microsoft.com/en-us/library/ms173152.aspx

207CHAPTER 6: Weapons

Completing the Punch and Gun Weapons
The PlayerController has been sufficiently prepared and modified to support weapon switching.

It’s now time to update the two weapon classes themselves to support this behavior. Doing this is

required because the PlayerController.EquipNextWeapon method calls on an Equip function in the

Weapon class, to equip the weapon for the Player (line 172). This method is invoked not on the Weapon

class itself, but by using a SendMessage function, allowing the derived classes to respond. And it’s

called for any newly equipped weapon, each and every time it’s equipped, giving it the opportunity

to perform any initialization code, such as displaying the default, idle sprite. Listing 6-8 lists the

completed Weapon_Punch code, with additions highlighted in bold.

Listing 6-8. Weapon_Punch.cs: Completed Punch Weapon

001 //--
002 using UnityEngine;
003 using System.Collections;
004 //--
005 //Inherits from Weapon class
006 public class Weapon_Punch : Weapon
007 {
008 //--
009 //Default Sprite to show for weapon when active and not attacking
010 public SpriteRenderer DefaultSprite = null;
011
012 //Sound to play on attack
013 public AudioClip WeaponAudio = null;
014
015 //Audio Source for sound playback
016 private AudioSource SFX = null;
017
018 //Reference to all child sprite renderers for this weapon
019 private SpriteRenderer[] WeaponSprites = null;
020 //--
021 void Start()
022 {
023 //Find sound object in scene
024 GameObject SoundsObject = GameObject.FindGameObjectWithTag("sounds");
025
026 //If no sound object, then exit
027 if(SoundsObject == null) return;
028
029 //Get audio source component for sfx
030 SFX = SoundsObject.GetComponent<AudioSource>();
031
032 //Get all child sprite renderers for weapon
033 WeaponSprites = gameObject.GetComponentsInChildren<SpriteRenderer>();
034
035 //Register weapon for weapon change events
036 GameManager.Notifications.AddListener(this, "WeaponChange");
037 }

208 CHAPTER 6: Weapons

038 //--
039 // Update is called once per frame
040 void Update ()
041 {
042 //If not equipped then exit
043 if(!IsEquipped) return;
044
045 //If cannot accept input, then exit
046 if(!GameManager.Instance.InputAllowed) return;
047
048 //Check for fire button input
049 if(Input.GetButton("Fire1") && CanFire)
050 StartCoroutine(Fire());
051 }
052 //--
053 //Coroutine to fire weapon
054 public IEnumerator Fire()
055 {
056 //If can fire
057 if(!CanFire || !IsEquipped) yield break;
058
059 //Set refire to false
060 CanFire = false;
061
062 //Play Fire Animation
063 gameObject.SendMessage("PlaySpriteAnimation", 0,

SendMessageOptions.DontRequireReceiver);
064
065 //Calculate hit
066
067 //Get ray from screen center target
068 Ray R = Camera.main.ScreenPointToRay(new Vector3(Screen.width/2,

Screen.height/2,0));
069
070 //Test for ray collision
071 RaycastHit hit;
072
073 if(Physics.Raycast(R.origin, R.direction, out hit, Range))
074 {
075 //Target hit - check if target is enemy
076 if(hit.collider.gameObject.CompareTag("enemy"))
077 {
078 //Play collection sound, if audio source is available
079 if(SFX){SFX.PlayOneShot(WeaponAudio, 1.0f);}
080
081 //Send damage message (deal damage to enemy)
082 hit.collider.gameObject.SendMessage("Damage",Damage,

SendMessageOptions.DontRequireReceiver);
083 }
084 }
085

209CHAPTER 6: Weapons

086 //Wait for recovery before re-enabling CanFire
087 yield return new WaitForSeconds(RecoveryDelay);
088
089 //Re-enable CanFire
090 CanFire = true;
091 }
092 //--
093 //Called when animation has completed playback
094 public void SpriteAnimationStopped()
095 {
096 //If not equipped then exit
097 if(!IsEquipped) return;
098
099 //Show default sprite
100 DefaultSprite.enabled = true;
101 }
102 //--
103 //Equip weapon
104 public bool Equip(WEAPON_TYPE WeaponType)
105 {
106 //If not this type, then exit and no equip
107 if((WeaponType != Type) || (!Collected) || (Ammo == 0) || (IsEquipped))

return false;
108
109 //Is this weapon. So equip
110 IsEquipped = true;
111
112 //Show default sprite
113 DefaultSprite.enabled = true;
114
115 //Activate Can Fire
116 CanFire = true;
117
118 //Send weapon change event
119 GameManager.Notifications.PostNotification(this, "WeaponChange");
120
121 //Weapon was equipped
122 return true;
123 }
124 //--
125 //Weapon change event - called when player changes weapon
126 public void WeaponChange(Component Sender)
127 {
128 //Has player changed to this weapon?
129 if(Sender.GetInstanceID() == GetInstanceID()) return;
130
131 //Has changed to other weapon. Hide this weapon
132 StopAllCoroutines();
133 gameObject.SendMessage("StopSpriteAnimation", 0,

SendMessageOptions.DontRequireReceiver);
134

210 CHAPTER 6: Weapons

135 //Deactivate equipped
136 IsEquipped = false;
137
138 foreach(SpriteRenderer SR in WeaponSprites)
139 SR.enabled = false;
140 }
141 //--
142 }

	Line 36. This weapon class registers for a WeaponChange event. When this event

occurs, the NotificationsManager will invoke the WeaponChange function (line

126), which typically will hide the weapon sprites for the active weapon, when it

becomes deactivated as the Player changes to a different weapon.

	Line 104. The EquipWeapon function is called by the PlayerController class

when the weapon becomes activated for the Player—that is, when it becomes

the currently selected weapon. Notice, this function also raises a WeaponChange

event at line 119.

Let’s also take a look over the Weapon_Gun class, as shown in Listing 6-9. Notice that its

implementation is very similar to the punch weapon in Listing 6-8. It simply features extra code to

handle limited and expired ammo. In fact, the Weapon_Gun class is so similar to Weapon_Punch, that

one might even be tempted to insert an additional level of class inheritance, creating a new base

class between Weapon and its derivatives Weapon_Gun and Weapon_Punch. This class would define

more behavior common to Weapon_Punch and Weapon_Gun, but without “infecting” the original Weapon

class. Decisions about class inheritance and where functionality belongs is critical to designing a

solid class framework for your games.

Listing 6-9. Weapon_Gun.cs: Completed Gun Weapon

001 //--
002 using UnityEngine;
003 using System.Collections;
004 //--
005 public class Weapon_Gun : Weapon
006 {
007 //--
008 //Default Sprite to show for weapon when active and not attacking
009 public SpriteRenderer DefaultSprite = null;
010
011 //Sound to play on attack
012 public AudioClip WeaponAudio = null;
013
014 //Audio Source for sound playback
015 private AudioSource SFX = null;
016
017 //Reference to all child sprite renderers for this weapon
018 private SpriteRenderer[] WeaponSprites = null;
019

211CHAPTER 6: Weapons

020 //--
021 // Use this for initialization
022 void Start ()
023 {
024 //Find sound object in scene
025 GameObject SoundsObject = GameObject.FindGameObjectWithTag("sounds");
026
027 //If no sound object, then exit
028 if(SoundsObject == null) return;
029
030 //Get audio source component for sfx
031 SFX = SoundsObject.GetComponent<AudioSource>();
032
033 //Get all child sprite renderers for weapon
034 WeaponSprites = gameObject.GetComponentsInChildren<SpriteRenderer>();
035
036 //Register weapon for weapon change events
037 GameManager.Notifications.AddListener(this, "WeaponChange");
038 }
039 //--
040 // Update is called once per frame
041 void Update ()
042 {
043 //If not equipped then exit
044 if(!IsEquipped) return;
045
046 //If cannot accept input, then exit
047 if(!GameManager.Instance.InputAllowed) return;
048
049 //Check for fire button input
050 if(Input.GetButton("Fire1") && CanFire)
051 StartCoroutine(Fire());
052 }
053 //--
054 //Coroutine to fire weapon
055 public IEnumerator Fire()
056 {
057 //If can fire
058 if(!CanFire || !IsEquipped || Ammo <= 0) yield break;
059
060 //Set refire to false
061 CanFire = false;
062
063 //Play Fire Animation
064 gameObject.SendMessage("PlaySpriteAnimation", 0,

SendMessageOptions.DontRequireReceiver);
065
066 //Play collection sound, if audio source is available
067 if(SFX){SFX.PlayOneShot(WeaponAudio, 1.0f);}
068

212 CHAPTER 6: Weapons

069 //Calculate hit
070
071 //Get ray from screen center target
072 Ray R = Camera.main.ScreenPointToRay(new Vector3(Screen.width/2,

Screen.height/2,0));
073
074 //Test for ray collision
075 RaycastHit hit;
076
077 if(Physics.Raycast(R.origin, R.direction, out hit, Range))
078 {
079 //Target hit - check if target is enemy
080 if(hit.collider.gameObject.CompareTag("enemy"))
081 {
082 //Send damage message (deal damage to enemy)
083 hit.collider.gameObject.SendMessage("Damage",Damage,

SendMessageOptions.DontRequireReceiver);
084 }
085 }
086
087 //Reduce ammo
088 --Ammo;
089
090 //Check remaining ammo - post empty notification
091 if(Ammo <= 0) GameManager.Notifications.PostNotification(this, "AmmoExpired");
092
093 //Wait for recovery before re-enabling CanFire
094 yield return new WaitForSeconds(RecoveryDelay);
095
096 //Re-enable CanFire
097 CanFire = true;
098 }
099 //--
100 //Called when animation has completed playback
101 public void SpriteAnimationStopped()
102 {
103 //If not equipped then exit
104 if(!IsEquipped) return;
105
106 //Show default sprite
107 DefaultSprite.enabled = true;
108 }
109 //--
110 //Equip weapon
111 public bool Equip(WEAPON_TYPE WeaponType)
112 {
113 //If not this type, then exit and no equip
114 if((WeaponType != Type) || (!Collected) || (Ammo == 0) || (IsEquipped))

return false;
115

213CHAPTER 6: Weapons

116 //Is this weapon. So equip
117 IsEquipped = true;
118
119 //Show default sprite
120 DefaultSprite.enabled = true;
121
122 //Activate Can Fire
123 CanFire = true;
124
125 //Send weapon change event
126 GameManager.Notifications.PostNotification(this, "WeaponChange");
127
128 //Weapon was equipped
129 return true;
130 }
131 //--
132 //Weapon change event - called when player changes weapon
133 public void WeaponChange(Component Sender)
134 {
135 //Has player changed to this weapon?
136 if(Sender.GetInstanceID() == GetInstanceID()) return;
137
138 //Has changed to other weapon. Hide this weapon
139 StopAllCoroutines();
140 gameObject.SendMessage("StopSpriteAnimation", 0, SendMessageOptions.

DontRequireReceiver);
141
142 //Deactivate equipped
143 IsEquipped = false;
144
145 foreach(SpriteRenderer SR in WeaponSprites)
146 SR.enabled = false;
147 }
148 //--
149 }

Before going further, be sure to implement both weapon classes into your project and take stock

over just how far we’ve come. Figure 6-19 shows the completed project up and running with weapon

functionality! Remember, the completed project for this chapter can be found in the book companion

files at Chapter06/End.

214 CHAPTER 6: Weapons

Figure 6-19. CMOD so far, with completed weapon functionality

Note One issue to consider here, regarding both the punch and the gun weapons, concerns code

duplication across multiple classes. These classes, as given here, duplicate some functionality, especially

within the Fire method. In general, code duplication is not recommended practice, unless essential, because

it leads to lengthy source files and increases the possibility of error.

One way to solve this here would be by moving some of the common functionality into the base class,

allowing both classes to inherent the behavior. But doing this puts greater restrictions on what weapons can

be, and makes the base class “heavier” in terms of functionality. Further, we might want to add new weapons

later that do not share this behavior and which work entirely differently. You could solve this by introducing

more classes and levels of inheritance, or by overriding functions differently.

In short, finding the right balance between inheritance, levels of inheritance, and code duplication

(where unavoidable) is part of creating a suitable class hierarchy for your project.

Don’t forget to create a weapon power-up that gives the Player the -weapon when collected (see book

companion files, if you’re not sure how to do that). Or else, enable the Weapon_Gun.Collected public

member for the gun in the Object Inspector, to assign the gun to the Player automatically at level start-up. Don’t

forget to set the gun ammo to 0 or above, and not –1; the gun cannot fire infinitely! See Chapter 4 for more

information on how to create collectable power-ups.

215CHAPTER 6: Weapons

Conclusion
In this chapter we’ve implemented a complete weapon system. This includes the full implementation

of a punch and gun weapon, as well as a system for switching between weapons after both have

been collected. By now, your trigger finger is probably getting itchy to shoot some baddies and test

the damage code. We’ll see that in action in the upcoming chapter as we explore intelligent enemies.

By now, you should be able to do the following:

Create weapon prefabs	
Understand object orientation and inheritance	
Understand how to create base classes and derived classes	
Code weapons from a common abstract base class	
Create basic sprite animation	
Create orthographic cameras	
Understand how to control camera depth and rendering	
Understand how to achieve pixel-perfection with orthographic size	
Create weapon cycling with polymorphism	
Understand how using SendMessage creates object independence	
Create classes that work nicely with the event system	

217

Chapter 7
Enemies

Right now, CMOD is really starting to take shape. By investing extra time and forethought, as we’ve

been doing, in carefully applying well-established C# and Unity-scripting principles, CMOD not

only works, but works solidly. That is, it’s easy to expand upon and difficult to break. When game

development seems to flow like that, one stage naturally coming out of the previous and moving

smoothly in a logical sequence, we may generally take that as a “good sign.” Thus far, we’ve created

a complete game environment, an event system, a First Person Controller, head-bobbing behavior,

collectible power-ups, and damage-dealing weapons. But we’re still missing Enemy characters, and

that’s a crucial ingredient for CMOD and practically any shooter game.

Essentially, we’re missing the things we can actually shoot at, and which can also shoot us back,

if we’re not quick enough to defend ourselves. So now it’s time to fix this serious omission.

Specifically, we’ll develop enemies that can both take and deal damage with weapons, and who

also exhibit a degree of “intelligence,” to guide their behavior and actions during gameplay, making

them appear animated and alive. In achieving this, we’ll cover a lot of technical ground, and some

of it highly controversial in game development and beyond, exploring subjects such as artificial

intelligence, finite state machines, and pathfinding and navigation. So, let’s go!

Meet the Bad Guys
As discussed in Chapter 1 of this book, CMOD will feature a total three different Enemy types, all of

whom are dangerous to the Player in different ways. These are the Drone (see Figure 7-1), the Tough

Guy (see Figure 7-2), and Mr. Big Cheese (see Figure 7-3).

218 CHAPTER 7: Enemies

It may come as no surprise to you by now that all three of these Enemy characters will be

implemented as Prefab objects. This will allow us to group together all graphics, assets, and

script files into a complete package—one we can reuse as necessary, filling the level with as many

enemies as we need. Let’s start by creating the enemy Drone prefab, a process that can be repeated

afterward to create all the remaining character prefabs.

Figure 7-1. The Drone: The weakest enemy. Has short-range attack

Figure 7-2. The Tough Guy: Nasty! Has a power handgun and long-range attack

Figure 7-3. Mr Big Cheese: The head honcho, the big fish, numero uno! There’s only one of this guy in each level. His attack is

short-range, but he hits very hard

Note In case you’re interested in how the enemies were drawn: I used the “three box” character design

method. That is, I started by drawing three empty squares on top of one another on a sketch pad, arranged

vertically. I then sized the boxes to represent the leg, torso, and head regions of the character. And then I filled

the boxes using only basic primitive shapes, such as squares, circles, and rectangles. These represent the

main forms of the character—and details can be added to these, such as a nose, eyes, and mouth, and so

forth. Try it for yourself, allowing only 5–7 minutes for each character.

219CHAPTER 7: Enemies

Starting the Enemy Drone Prefab
First, create a new and empty GameObject in the scene (named Drone), to represent the basis

for the Drone enemy character. As seen before, new objects are created with the shortcut key

Ctrl+Shift+N, or by selecting GameObject ➤ Create Empty from the menu. Often, however, the

new object is not centered at the world origin as you’d expect, but is positioned at an offset. Now,

this isn’t really problematic, because it’s easy to reset an object’s position by simply typing in 0, 0, 0

into the X, Y, and Z fields of the Transform component in the Object Inspector. But, there’s an even

quicker method still. Just click the Cog icon in the Transform component, and choose Reset from the

context menu, to reset the Transform component to its default values (see Figure 7-4).

Figure 7-4. A game object can be reset to zeroed values by choosing Reset from the component cog menu

Next, drag and drop all Drone-related sprites from the atlas texture in the project panel onto the

newly created empty in the scene, ensuring all sprite instances are added as child objects. Be sure

to drag and drop the sprites into the Hierarchy panel, and not the Scene viewport. Remember,

the hierarchical arrangement of objects in this way (many objects grouped as children beneath a

common parent) is crucial for easily generating Prefab objects further along the line. Prefabs expect

a single parent ancestor (see Figure 7-5).

220 CHAPTER 7: Enemies

As with the weapon objects created in the previous chapter, the sprite instances added here will

act as frames of animation for when the Enemy walks around the level or attacks the Player. These

frames will be shown using the SpriteShowAnimator component (coded in the previous chapter).

This component effectively toggles the visibility of sprite objects over time, ensuring only one frame

is visible at once. The result is a flipbook animation effect. For the enemy object, however, we’ll need

two SpriteShowAnimator components, one for each animation type: Attack and Walk. Each Enemy

will either be walking around or attacking the Player. More on these states later when we explore finite

state machines. But here, it’s enough to confirm that each Enemy relies on two animations: so let’s

add two SpriteShowAnimator components and configure each one. The move animation consists of

four frames: spr_drone_run_01, spr_drone_run_02, spr_drone_run_03, and spr_drone_run_04. The

attack animation consists of two frames: spr_drone_attack, and spr_drone_neutral (see Figure 7-6).

Figure 7-5. Adding all Drone sprites to a common parent object

221CHAPTER 7: Enemies

Be sure to tag the Enemy object as an enemy; a value we’ll use later when detecting collisions.

That is, use the Tags drop-down in the Object Inspector to label the object as an Enemy. In addition,

hide all the added sprite objects by deactivating their Sprite Renderer components, leaving only the

default (neutral) sprite visible as the main sprite and frame for the Enemy in all cases when it’s not

animating. This prevents all frames of animation from being seen at the same time when the level

begins; only one frame should be visible at once. Finally, to complete the basic configuration, add

both a Billboard component and a Box Collider component to the enemy object; the former keeps

the Enemy sprite aligned to the camera, and the second ensures that the Enemy has a basic volume

and bounding area for collision detection (see Figure 7-7).

Figure 7-6. Configuration animations for the Enemy objects using SpriteShowAnimator components

Note I’ve given each SpriteShowAnimator component a unique ID number. Further, the Walk animation has

an FPS of 12, and the Attack animation has an FPS of 3. You don’t need to maintain exactly the IDs I’ve used

here, nor the FPS values I’ve chosen; so long as you choose consistent IDs and FPS values, choose what

works best in your view and with your assets.

222 CHAPTER 7: Enemies

Figure 7-7. Configuring the Drone enemy with a Billboard component and a BoxCollider component

Tip Billboard and Box Collider objects were considered in depth for power-up objects in Chapter 4.

Coding Enemy Damage
The preliminaries taken so far have established the basics for the Drone prefab, but lots more awaits

us in terms of C# coding. Let’s start by considering the issue of dealing damage to the Enemy.

When the Player fires a weapon at an Enemy that’s in range, the Enemy should take damage unless

there’s an overriding reason not to (such as an invincibility shield), and further, the Enemy should

be destroyed if the dealt damage reduces its health to 0 or below. In this game, we won’t need to

consider invincibility shields and other damage-reducing factors. I mention it here primarily because

for many games it is a consideration. To implement the damage receiving functionality for the Drone,

as well as its other behaviors, we’ll code two classes, and we’ll use the object-oriented concept of

class inheritance to make them work together. Inheritance was introduced in the previous chapter

when considering weapon implementation. I’ll call these classes Enemy (the base class for all

Enemies generally), and Enemy_Drone (the derived class implementing Drone-specific functionality).

These classes will be added in the C# script files Enemy.cs and Enemy_Drone.cs, respectively. Go

ahead and add these script files now, as shown in Figure 7-8.

223CHAPTER 7: Enemies

Note Be sure to add the Enemy_Drone class as a component to the Drone object in the scene. Remember,

you don’t need to add the Enemy base class as a component, because the functionality of this class is

inherited automatically by Enemy_Drone.

Figure 7-8. Adding an Enemy base class and an Enemy_Drone derived class to create Drone-specific functionality

224 CHAPTER 7: Enemies

For now, let’s turn back to the previous chapter (Chapter 6) for creating weapons, and view Listing

6-8 (line 78). Here, you’ll see that when a weapon strikes an enemy object, it uses the SendMessage

function to initiate a Damage event on the Enemy object being hit, if such an event exists. The Damage

event should handle all damage-receiving functionality. With this in mind, let’s consider the starting

implementation for both the Enemy base class and the Enemy_Drone derived class, as shown in

Listings 7-1 and 7-2; comments follow.

Listing 7-1. Enemy.cs: Base Class for Enemy Objects

01 using UnityEngine;
02 using System.Collections;
03
04 public class Enemy : MonoBehaviour
05 {
06 //Current health of this enemy – inherited by descendent classes
07 public int Health = 100;
08 }

Listing 7-2. Enemy_Drone.cs: Derived Class for Drone Objects

01 using UnityEngine;
02 using System.Collections;
03
04 public class Enemy_Drone : Enemy
05 {
06 //--
07 //Event called when damaged by an attack
08 public void Damage(int Damage = 0)
09 {
10 //Reduce health
11 Health -= Damage;
12
13 //Check if dead
14 if(Health <= 0)
15 {
16 //Send enemy destroyed notification
17 GameManager.Notifications.PostNotification(this, "EnemyDestroyed");
18
19 //Remove object from scene
20 DestroyImmediate(gameObject);
21
22 //Clean up old listeners
23 GameManager.Notifications.RemoveRedundancies();
24 }
25 }
26 //--
27 }

225CHAPTER 7: Enemies

	Listing 7-1. Line 07. The base Enemy class defines a Health variable, common

to all enemies. Using this, derived classes may keep track of Enemy health.

	Listing 7-2. Line 08. The Enemy_Drone class implements a Damage event, which

will be called every time the Player strikes the Enemy with a weapon: either a

punch with fists or a gun.

	Listing 7-2. Lines 11–23. Here, the Enemy’s health is reduced by the weapon

damage amount, specified by the function argument Damage. Further, if Enemy

health is reduced to 0 or below, the Enemy object is destroyed using the

DestroyImmediate function, and the NotificationsManager is updated to remove

all redundant listeners.

Let’s give this code a test run to confirm it works as intended. Run the game in Editor, selecting the

Drone object in the scene. As you attack the Enemy with your weapon, observe his Health variable

in the Object Inspector. For each successful strike you make, the Enemy’s health will be reduced by

the damage appropriate for your weapon. The gun weapon deals the most damage. Congratulations!

We’ve now established an important connection between objects; specifically, the Player, Weapons,

Enemies, and the NotificationsManager (see Figure 7-9).

Figure 7-9. Damaging enemies with weapons!

Improving Damage Dealing: Feedback
Right now the Player deals damage to the Enemy, but we (as developers) only have the live-preview

of variable values in the Object Inspector to confirm that this behavior is truly working as intended

at runtime. There’s currently no visual or graphical indication for the gamer that damage has been

sustained by the Enemy. Some might not regard this as a very big deal—after all, it works, and

isn’t that enough? However, this dismissal might be premature. Many academic studies have been

226 CHAPTER 7: Enemies

made about the emotional influence of graphical and audible feedback in software, and especially in

games. It seems possible that the aggregate effects of even the smallest tokens of feedback, such

as a ping or swoosh sound played when achievements are made, can contribute toward a more

rewarding and satisfying feeling in-game, leading to greater emotional attachments between the

gamer and the game.

But even without these studies and theories, I’m guessing most of us have felt emotionally rewarded

and gratified firsthand whenever a game acknowledges our successes or correct moves. At least,

I know I have! So, let’s add some visual feedback to CMOD for enemy damage events by making the

Enemy flicker red when damage is taken. To do this, I’ll create a new class, PingPongSpriteColor,

which works much like the PingPong movement script created for power-up objects in Chapter 4,

except here the script will ping-pong between sprite material colors, allowing us to transition a sprite

from one color to another over a specified time. Listing 7-3 lists that class in full.

Listing 7-3. PingPongSpriteColor.cs: Transitions Between Material Colors

01 //Sets color for all child sprite renderers in a gameobject
02 //--
03 using UnityEngine;
04 using System.Collections;
05 //--
06 public class PingPongSpriteColor : MonoBehaviour
07 {
08 //Source (from) color
09 public Color Source = Color.white;
10
11 //Destination (to) color
12 public Color Dest = Color.white;
13
14 //Custom ID for this animation
15 public int AnimationID = 0;
16
17 //Total time in seconds to transition from source to dest
18 public float TransitionTime = 1.0f;
19
20 //List of sprite renders whose color must be set
21 private SpriteRenderer[] SpriteRenderers = null;
22
23 //--
24 // Use this for initialization
25 void Start ()
26 {
27 //Get all child sprite renderers
28 SpriteRenderers = GetComponentsInChildren<SpriteRenderer>();
29 }
30 //--
31 public void PlayColorAnimation(int AnimID = 0)
32 {
33 //If Anim ID numbers do not match, then exit - should not play this animation
34 if(AnimationID != AnimID) return;
35

227CHAPTER 7: Enemies

36 //Stop all running coroutines
37 StopAllCoroutines();
38
39 //Start new sequence
40 StartCoroutine(PlayLerpColors());
41 }
42 //--
43 //Start animation
44 private IEnumerator PlayLerpColors()
45 {
46 //Lerp colors
47 yield return StartCoroutine(LerpColor(Source, Dest));
48 yield return StartCoroutine(LerpColor(Dest, Source));
49 }
50 //--
51 //Function to lerp over time, from Color X to Color Y
52 private IEnumerator LerpColor(Color X, Color Y)
53 {
54 //Maintain elapsed time
55 float ElapsedTime = 0.0f;
56
57 //Loop for transition time
58 while(ElapsedTime <= TransitionTime)
59 {
60 //Update Elapsed time
61 ElapsedTime += Time.deltaTime;
62
63 //Set sprite renderer colors
64 foreach(SpriteRenderer SR in SpriteRenderers)
65 SR.color = Color.Lerp(X, Y, Mathf.Clamp(ElapsedTime/TransitionTime,

0.0f, 1.0f));
66
67 //Wait until next frame
68 yield return null;
69 }
70
71 //Set dest color
72 foreach(SpriteRenderer SR in SpriteRenderers)
73 SR.color = Y;
74 }
75 //--
76 } //Send enemy destroyed notification

Note In Listing 7-3, coroutines have been used to create a ping-pong effect between color data structures.

There are, however, other methods for achieving similar ping-ponging behavior. For example, see the online

Unity documentation at https://docs.unity3d.com/Documentation/ScriptReference/

Mathf.PingPong.html.

https://docs.unity3d.com/Documentation/ScriptReference/Mathf.PingPong.html
https://docs.unity3d.com/Documentation/ScriptReference/Mathf.PingPong.html

228 CHAPTER 7: Enemies

Go ahead and add this class as a component to the Enemy_Drone object in the scene. The

PingPongSpriteColor class supports a range of public member variables, including Source and Dest

colors, representing the color to blend with the sprite material using multiplicative blending. Source

defines the default color to be blended with the sprite when it’s not being attacked (this should be

white to preserve the default colors defined in the sprite texture file), and Dest defines the blending

color when the sprite is under attack (and this should be red). This is because the sprite should

turn red when being attacked. The transition time defines the total time in seconds for the sprite

to change color from its default (white) to red when being attacked. For the Drone character, I’ve

specified a value of 0.3 seconds (see Figure 7-10).

Figure 7-10. Configuring color animation for the sprite material

Just adding PingPongSpriteColor as a component to the game object isn’t enough, however,

for turning the Enemy red when attacked. We’ll need some extra code in the Damage event for

Enemy_Drone to initiate the red-flashing behavior at the appropriate time. Consider the amended

Damage event in Listing 7-4. The Damage event now calls on the PingPongSpriteColor function

PlayColorAnimation (as defined at line 31 in Listing 7-3).

229CHAPTER 7: Enemies

Listing 7-4. Amending Enemy_Drone to Work with PingPongSpriteColor

01 using UnityEngine;
02 using System.Collections;
03
04 public class Enemy_Drone : Enemy
05 {
06 //--
07 //Event called when damaged by an attack
08 public void Damage(int Damage = 0)
09 {
10 //Reduce health
11 Health -= Damage;
12
13 //Play damage animation
14 gameObject.SendMessage("PlayColorAnimation",0,SendMessageOptions.

DontRequireReceiver);
15
16 //Check if dead
17 if(Health <= 0)
18 {
19 //Send enemy destroyed notification
20 GameManager.Notifications.PostNotification(this, "EnemyDestroyed");
21
22 //Remove object from scene
23 DestroyImmediate(gameObject);
24
25 //Clean up old listeners
26 GameManager.Notifications.RemoveRedundancies();
27 }
28 }
29 //--
30 }

Let’s see this code in action in the Unity Editor, as shown in Figure 7-11. The result: our Enemy

now responds not only to attacks in terms of health reduction, but the gamer can actually see an

indication that damage has been taken. Splendid work. Let’s move on!

230 CHAPTER 7: Enemies

Enemies, Intelligence, and Philosophical Zombies
The problem with the enemy Drone created so far rests not so much in anything he does, but in

what he doesn’t do. Right now, he stands motionlessly on the spot wherever we put him, and he

takes damage when delivered. But he doesn’t move in any appropriate respect, he doesn’t fight

back, and he doesn’t even try to avoid attacks. In short, he doesn’t do anything we’d expect an

“intelligent” person to do in the same or similar circumstances. As a result, the Enemy is technically

functional but is practically unconvincing. And so to solve this issue, we enter naturally into the world

of artificial intelligence. But what is that, really? What does it amount to in practice for CMOD? And

more importantly, what does it mean for your games?

Artificial intelligence (AI) is a huge and controversial field. But a narrow part of it is worth considering

here very briefly, pertaining to philosophy. Within this field, there are some who consider the word

artificial in the term artificial intelligence to be highly misleading and incorrect. They say, when you

really think about it, the only good basis you have for believing that other humans are intelligent

is from what you personally observe them doing. Everybody could really be zombies, for all you

know. After all, you can’t open people’s heads and see them thinking. You can’t see their thoughts

Figure 7-11. The Enemy taking damage

231CHAPTER 7: Enemies

with your own eyes. All you can do is observe how people behave in particular contexts. And when

you see them behaving in specific ways in specific situations, (like trying to avoid being attacked,

and trying to retaliate against an aggressor), we call that kind of behavior intelligent. And that’s all

intelligence is: a behavior pattern.

The word artificial in artificial intelligence serves no purpose, because when a preprogrammed

character in a video game (like our Enemy) responds in intelligent-looking ways, even in a virtual

world, it’s not demonstrating fake or artificial intelligence, it’s demonstrating real intelligence. Its

intelligence is fundamentally no different from human intelligence. After all, in both cases we identify

the intelligence by appearances alone, and that’s all we ever have to base our belief on. So, for

these thinkers (I’ll call them Functionalists), there’s no point asking whether computers will one day

be intelligent. They’re intelligent right now! It’s only common misunderstandings that prevent most

people accepting it.

This Functionalist view runs against common sense today. Most people think there’s a fundamental

difference of some kind between a human and a computer regarding intelligence. We feel the

Functionalist is missing an important piece of the puzzle. We feel that a computer, no matter how

sophisticated, will never be “truly” intelligent because it lacks an important, conscious and inward

ingredient that humans have. Now, whatever the case may be, there’s something very useful in the

Functionalist view for the game developer, and also something very hindering and troubling in the

common-sense view. For this reason, whatever you personally think on the matter (I change my mind

every time I think about it), I recommend a pragmatic approach: suspend your position temporarily

and see intelligence from the perspective of the Functionalist. Why?

Often, when developers start creating a game with AI, they approach the matter believing their

aim is to develop some kind of super-intelligent and truly clever enemy; one that calculates and

figures out what to do just like a clever human would, and in just the same way. But because the

common-sense view maintains an intuitive feeling of incompatibility between human and computer

intelligence, it lures us into thinking that AI is something very difficult; into feeling as though we’re

“out of our depth.” However, by taking the Functionalist view instead, and by seeing AI with

those eyes, then new and exciting possibilities emerge. For game AI, the artistic rule applies: if it

looks right, then it is right. If the enemy appears intelligent when the gamer is looking, then that’s

intelligence enough. It’s the appearance that we recognize as intelligence, despite what philosophical

debaters may have to say about “true intelligence.” If it’s good enough to fool the gamer and offer

a believable experience, then it’s “good enough” for us, and we needn’t trouble ourselves unduly in

creating something beyond.

Note There are some exceptional games that “go further” with AI and explore new boundaries and ideas,

and approach the task from new perspectives. These are often experimental games, “serious” games, or

simulators. But for CMOD and most other games, the Functionalist view will be our friend when coding AI in

C# and Unity.

232 CHAPTER 7: Enemies

Finite State Machines (FSMs)
So let’s start creating intelligent enemies (notice that I didn’t say artificially intelligent)! The three

Enemy types for CMOD (the Drone, the Tough Guy, and Mr. Big Cheese) will all share the same

behavior; and so the intelligence will be coded into the Enemy base class, and not into any of

the derivatives—allowing all the derived classes to inherit the functionality. For CMOD, the three

Enemies will work as follows in terms of intelligence:

1. When the level begins, all Enemies will wander or patrol around the

environment. They will continue doing this until they come close to the Player

and the Player enters their line of sight. That is, when the Player enters an

Enemy’s observation radius.

2. When the Player enters an Enemy’s observation radius, the Enemy will

change its behavior. Specifically, it will stop patrolling, and will start pursuing

or chasing the Player.

3. The Enemy will continue to chase the Player until either the Player leaves

the Enemy’s observation radius (the Player outruns the Enemy), or when the

Enemy comes within attacking distance to the Player.

4. If the Player leaves the Enemy’s observation radius, the Enemy returns back

to a Patrol state, wandering the level repeatedly.

5. If the Enemy enters attacking distance to the Player, the Enemy will change

behavior again. Specifically, he will change from chasing to attacking.

6. When an Enemy is attacking the Player, he will continue to deal damage

using his weapon, until either the Player dies, or the Player is no longer within

attacking distance.

Together these conditions and this logic define the general intelligence pattern for the Enemy. This

kind of system is called a finite state machine, because the Enemy can be in only one state at any

one time (Patrol, Chase, or Attack), and all of these states are known in advance and are connected

to one another by relationships in a complete system. That is, the Enemy can change from any one

state to another, only when certain conditions happen. We may start to define the states for this

machine in the Enemy class using C# code with an enum, as shown in Listing 7-5.

Listing 7-5. Defining the States for an FSM

01 using UnityEngine;
02 using System.Collections;
03
04 public class Enemy : MonoBehaviour
05 {
06 //Enum of states for FSM
07 public enum ENEMY_STATE {PATROL = 0, CHASE = 1, ATTACK=2};
08

233CHAPTER 7: Enemies

09 //Current state of enemy - default is patrol
10 public ENEMY_STATE ActiveState = ENEMY_STATE.PATROL;
11
12 //Current health of this enemy
13 public int Health = 100;
14 }

Changing Between States
Each of the three states for the Enemy will be implemented as separate coroutines, with each

respective coroutine repeating every frame for as long as the state is active. To achieve this, we’ll

need three coroutines, one for each state, and a function to manage and change between states.

The Enemy class be updated as shown in Listing 7-6; comments follow.

Listing 7-6. Moving Further with FSMs: Defining State Relationships with Coroutines

001 using UnityEngine;
002 using System.Collections;
003
004 public class Enemy : MonoBehaviour
005 {
006 //Enum of states for FSM
007 public enum ENEMY_STATE {PATROL = 0, CHASE = 1, ATTACK=2};
008
009 //Current state of enemy - default is patrol
010 public ENEMY_STATE ActiveState = ENEMY_STATE.PATROL;
011
012 //Current health of this enemy
013 public int Health = 100;
014
015 //Reference to active PlayerController component for player
016 protected PlayerController PC = null;
017
018 //Enemy cached transform
019 protected Transform ThisTransform = null;
020
021 //Reference to Player Transform
022 protected Transform PlayerTransform = null;
023
024 //Total distance enemy must be from player, in Unity Units, before chasing them

(entering chase state)
025 public float ChaseDistance = 10.0f;
026
027 //Total distance enemy must be from player before attacking them
028 public float AttackDistance = 0.1f;
029
030 //--

234 CHAPTER 7: Enemies

031 void Start()
032 {
033 //Get Player Controller Component
034 GameObject PlayerObject = GameObject.Find("Player");
035 PC = PlayerObject.GetComponentInChildren<PlayerController>();
036
037 //Get Player Transform
038 PlayerTransform = PC.transform;
039
040 //Get Enemy Transform
041 ThisTransform = transform;
042
043 //Set default state
044 ChangeState(ActiveState);
045 }
046 //--
047 //Change AI State
048 public void ChangeState(ENEMY_STATE State)
049 {
050 //Stops all AI Processing
051 StopAllCoroutines();
052
053 //Set new state
054 ActiveState = State;
055
056 //Activates new state
057 switch(ActiveState)
058 {
059 case ENEMY_STATE.ATTACK:
060 StartCoroutine(AI_Attack());
061
062 //Notify Game Object - in case we want to handle state change
063 SendMessage("Attack", SendMessageOptions.DontRequireReceiver);
064 return;
065
066 case ENEMY_STATE.CHASE:
067 StartCoroutine(AI_Chase());
068
069 //Notify Game Object - in case we want to handle state change
070 SendMessage("Chase", SendMessageOptions.DontRequireReceiver);
071 return;
072
073 case ENEMY_STATE.PATROL:
074 StartCoroutine(AI_Patrol());
075
076 //Notify Game Object - in case we want to handle state change
077 SendMessage("Patrol", SendMessageOptions.DontRequireReceiver);
078 return;
079 }
080 }
081 //--

235CHAPTER 7: Enemies

082 //AI Function to handle patrol behaviour for enemy
083 //Can exit this state and enter chase
084 IEnumerator AI_Patrol()
085 {
086 //Loop forever while in patrol state
087 while(ActiveState == ENEMY_STATE.PATROL)
088 {
089 //Check if should enter chase state
090 if(Vector3.Distance(ThisTransform.position, PlayerTransform.position) <

ChaseDistance)
091 {
092 //Exit patrol and enter chase state
093 ChangeState(ENEMY_STATE.CHASE);
094 yield break;
095 }
096
097 yield return null;
098 }
099 }
100 //--
101 //AI Function to handle patrol behaviour for enemy
102 //Can exit this state and enter chase
103 IEnumerator AI_Chase()
104 {
105 //Loop forever while in chase state
106 while(ActiveState == ENEMY_STATE.CHASE)
107 {
108 //Check distances and state exit conditions
109 float DistanceFromPlayer = Vector3.Distance(ThisTransform.position,

PlayerTransform.position);
110
111 //If within attack range, then change to attack state
112 if(DistanceFromPlayer < AttackDistance) {ChangeState(ENEMY_STATE.ATTACK);

yield break;}
113
114 //If outside chase range, then revert to patrol state
115 if(DistanceFromPlayer > ChaseDistance) {ChangeState(ENEMY_STATE.PATROL);

yield break;}
116
117 //Wait until next frame
118 yield return null;
119 }
120 }
121 //--
122 //AI Function to handle attack behaviour for enemy
123 //Can exit this state and enter either patrol or chase
124 IEnumerator AI_Attack()
125 {
126 //Loop forever while in chase state
127 while(ActiveState == ENEMY_STATE.ATTACK)
128 {
129 //Check distances and state exit conditions

236 CHAPTER 7: Enemies

130 float DistanceFromPlayer = Vector3.Distance(ThisTransform.position,
PlayerTransform.position);

131
132 //If outside chase range, then revert to patrol state
133 if(DistanceFromPlayer > ChaseDistance) {ChangeState(ENEMY_STATE.PATROL);

yield break;}
134
135 //If outsideattack range, then change to chase state
136 if(DistanceFromPlayer > AttackDistance) {ChangeState(ENEMY_STATE.CHASE);

yield break;}
137
138 yield return null;
139 }
140 }
141 //--
142 }

	Lines 25 and 28. Here we defined some distances (measured in Unity units) for

the Chase and Attack behaviors. When chasing, the ChaseDistance is critical

in determining whether the Enemy should switch to the patrolling or attacking

state. When attacking, the AttackDistance determines whether the Enemy

should switch back to the Chase state.

	Line 48. The ChangeState function is responsible for switching or moving the

state machine from one state to another. When a state-changing condition in

the system is detected (such as when the Enemy enters the AttackDistance

from the Player), the ChangeState function must be called to change states.

	Lines 56, 84, and 103. The coroutines AI_Patrol, AI_Chase, and AI_Attack are

looping routines that repeat for as long as the enemy is in the respective state.

In essence, these functions handle all frame-based functionality for a state.

Note Right now the states do not perform all the needed behavior. For example, the Chase state will not

(yet) make the Enemy actually chase the Player. This will be implemented in coming sections.

Preparing for State Implementation
In the previous section, we coded the main logic governing the enemy FSM. This included all its

states (Patrol, Chase, and Attack), all of which are controlled through specific coroutines in the

class. And finally, we implemented a function (ChangeState) to switch between states whenever the

appropriate conditions arise during gameplay; and generally, these conditions relate to the amount

of distance between the Enemy and the Player at any time. Together, this functionality represents

the core of the enemy FSM, but so far the states are not “fleshed out.” The various states can

handle state switching, allowing us to immediately change from one state to another, but none of

them actually make the Enemy do anything else. The Chase state doesn’t make the Enemy chase

the Player, the Patrol state doesn’t make the Enemy patrol, and the Attack state doesn’t make the

Enemy attack. So now it’s time to implement these.

237CHAPTER 7: Enemies

Let’s consider the Patrol state. In the Patrol state, the Enemy should appear to be moving around

and to be “up to something.” In practice, this means the Enemy class should internally generate a

random location inside the level, and then move there. And when the destination is reached, the

Enemy should generate a new location elsewhere, and then move there, and so on for as long

as the Patrol state is active. Now, to achieve this, we’ll need to make use of pathfinding and

navigation. Before considering this, let’s add a NavMeshAgent component to the Enemy character.

Doing this signifies that our Enemy will be the kind of thing that can move intelligently around the

level. To add a NavMeshAgent component, select the Enemy_Drone in the scene, and choose

Component ➤ Navigation ➤ Nav Mesh Agent from the application menu (see Figure 7-12).

The Component settings can be left at their defaults for now.

Figure 7-12. Adding a NavMeshAgent component to the enemy Drone

The NavMeshAgent component will be necessary because, for the Enemy to move around the level,

pathfinding and navigation will be used. Why is this? Consider Figure 7-13. Suppose the Enemy

(standing in position A), in a Patrol state, decides to move to a new destination (position B). The

blue arrows in Figure 7-13 indicate the route he should take to travel from A to B. We, as humans,

can clearly see and plan the route as shown, because we know certain things about the world: we

know we can’t walk through walls, for example. To accommodate this, we therefore create a route

that conforms to the environment, ensuring we only travel along possible routes. But the problem is

that the enemy Drone doesn’t know any of this! He would quite happily take the direct route, passing

ethereally through all walls and obstacles to reach the destination. And Unity will do absolutely

nothing to stop him. Thus, we need the Enemy to act smart and consider obstacle avoidance when

traveling. To solve this, we’ll use the Unity NavMesh system.

238 CHAPTER 7: Enemies

In Chapter 2 we constructed the main environment for CMOD, and this included generating an

internal mesh structure, known as a NavMesh. To do this, we used the Navigation window (available

from the menu at Window ➤ Navigation). When this window is active and the Show NavMesh

check box is enabled from the NavMesh Display utility window in the viewport, the NavMesh for the

scene will be displayed at the floor level, as shown in Figure 7-14. The NavMesh is highlighted in

blue and represents the total surface area in the scene that Unity regards as walkable. That is, the

blue area marks out the region inside which travel and movement can occur. Now for most objects

in the scene, the NavMesh is completely ineffectual. It only applies to objects with a NavMeshAgent

component attached. Objects with this component attached become part of the pathfinding and

navigation system; these objects become linked to the navigation meshes and respond to intelligent

navigation. Let’s see how by implementing each of the states for the FSM, in turn.

Figure 7-13. A sample route for an Enemy character requires obstacle avoidance

239CHAPTER 7: Enemies

The Patrol State
In the Patrol state, the Enemy will wander the scene, traveling from its current position to a randomly

selected destination elsewhere in the level. Achieving this requires some amendment to the Enemy

class. Let’s see some of the changes to the AI_Patrol coroutine, as shown in Listing 7-7. In-depth

comments follow.

Listing 7-7. Updating the Patrol State Coroutine

01 //--
02 //AI Function to handle patrol behaviour for enemy
03 //Can exit this state and enter chase
04 IEnumerator AI_Patrol()
05 {
06 //Stop Agent - NavMeshAgent – declared as a member of the class. See Code 7-9
07 Agent.Stop();
08
09 //Loop forever while in patrol state
10 while(ActiveState == ENEMY_STATE.PATROL)
11 {
12 //Get random destination on map
13 Vector3 randomPosition = Random.insideUnitSphere * PatrolDistance;
14
15 //Add as offset from current position
16 randomPosition += ThisTransform.position;
17
18 //Get nearest valid position
19 NavMeshHit hit;
20 NavMesh.SamplePosition(randomPosition, out hit, PatrolDistance, 1);
21

Figure 7-14. The navigation mesh marks out walkable space in the level

240 CHAPTER 7: Enemies

22 //Set destination
23 Agent.SetDestination(hit.position);
24
25 //Set distance range between object and destination to classify as 'arrived'
26 float ArrivalDistance = 2.0f;
27
28 //Set timeout before new path is generated (5 seconds)
29 float TimeOut = 5.0f;
30
31 //Elapsed Time
32 float ElapsedTime = 0;
33
34 //Wait until enemy reaches destination or times-out, and then get new position
35 while(Vector3.Distance(ThisTransform.position, hit.position) >

ArrivalDistance && ElapsedTime < TimeOut)
36 {
37 //Update ElapsedTime
38 ElapsedTime += Time.deltaTime;
39
40 //Check if should enter chase state
41 if(Vector3.Distance(ThisTransform.position, PlayerTransform.position) <

ChaseDistance)
42 {
43 //Exit patrol and enter chase state
44 //ChangeState(ENEMY_STATE.CHASE);
45 //yield break;
46 }
47
48 yield return null;
49 }
50 }
51 }
52 //--

	Line 07. This coroutine begins by calling the Stop function in the member agent.

The member agent is newly added to the class as a protected NavMeshAgent

agent. It is a reference to the NavMeshAgent component attached to the game

object. An instance to this component is retrieved in the Start event for the

class. The Stop function of NavMeshAgent simply terminates any outstanding

navigation and movement operations, if they were any.

Note More information on the NavMeshAgent component can be found at the online Unity documentation at

https://docs.unity3d.com/Documentation/ScriptReference/NavMeshAgent.html.

https://docs.unity3d.com/Documentation/ScriptReference/NavMeshAgent.html

241CHAPTER 7: Enemies

 	 Line 13. Here we draw an imaginary circle or area around the Enemy character,

and randomly pick a point inside it within the scene. This process is about

choosing a random new location to act as the destination for traveling.

	Lines 19 and 20. The problem with picking a random location inside the

level is that we don’t know where the location will be. This entails risk. For

example, it’s possible the Enemy could be standing close to a wall and that

we randomly pick a point behind the wall, perhaps a location that’s impossible

to ever reach because it’s outside the navigation mesh and area of the level in

general. In this case, the destination is indeed random, but it’s unreachable in

all possible scenarios. To avoid this problem, we can use the function

NavMesh.SamplePosition to validate our random destination before traveling

there. This function will give us the nearest valid position on the navigation mesh

to our specified destination, if the original destination is not valid.

	Line 23. Here we set the agent destination in script. When we do this, the

NavMeshAgent will automatically travel there, avoiding obstacles and observing

the topology of the NavMesh.

	Lines 26–51. Being able to send the NavMeshAgent toward a destination is

great. But, how do we know when it’s arrived there? It’s important to know

this because, when it arrives, we’ll need to pick a new and random destination

elsewhere to travel toward. Currently in Unity, there’s no function to answer this

query directly; we must code our own functionality to determine destination

arrival. We do this at line 35. You might wonder why we can’t simply compare

the Enemy position directly to the destination to see whether he’s arrived, such

as enemy.position == destination.position. The reason relates to floating-point

precision on computers due to rounding issues and large number storage.

In practice, it may be that two objects are (to the eye) at the same location

in the scene, even though their world positions (expressed in floating-point

numbers) are fractionally different, mathematically speaking. This makes direct

comparison troublesome when attempting to assess equality, and so often, two

objects that appear to be in the same position actually have slightly different

positional values. So, instead we can use an Epsilon and a Timeout. The Epsilon

means that if the Enemy arrives within a certain distance of the destination

(ArrivalDistance), then we’ll classify the destination as reached. The Timeout

technique is used as a fail-safe feature, in case any inaccuracies or slip-ups

occur during the pathfinding process (which is possible, in practice). This means

that, if a specified time has elapsed since travel began (TimeOut), then pick a

new destination, as though the Enemy had arrived (see Figure 7-15).

242 CHAPTER 7: Enemies

	Line 43–45. Notice that, for this sample, I’ve commented out all lines relating

to state-changing functionality. This is simply for testing purposes so that

when unit testing the code in Listing 7-7, no confusion arises because of any

state changes. The Enemy will begin and remain in the Patrol state, allowing

us to observe and test that state alone. We’ll reactivate these lines later, when

completing the whole FSM.

Figure 7-15. The Patrol state in action!

Note If you’re interested in some of the reasons why pathfinding can fail in practice, and you like math,

I recommend searching the web for under-constrained problems.

Note Give the Patrol state a try in-game. Remember, the associated script files for this functionality (should

you require them) are included in the book companion files in the Chapter07 folder, in the files Enemy.cs

and Enemy_Drone.cs.

Refining the Patrol State
The Patrol state is now operational in the sense that our Enemy character moves around the scene,

traveling intelligently to a random destination using the navigation mesh feature. But there’s a problem:

he doesn’t animate while moving. The character moves, in terms of position and rotation within the

243CHAPTER 7: Enemies

scene, but the run animation never plays back during the move, and so the Enemy simply looks like

he’s hovering or sliding around the level. Creepy! So let’s change that now. To do this, we’ll return to the

Enemy_Drone class and make use of the SendMessage functionality, coded earlier in Listing 7-6, where the

ChangeState function sends a change state message to the enemy object. We’ll use this message to

initiate playback of the relevant animation (see the amended Enemy_Drone script in Listing 7-8).

Listing 7-8. Enemy_Drone.cs: Integrating with Navigation

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class Enemy_Drone : Enemy
06 {
07 //--
08 //Sprites for walk animation
09 public SpriteRenderer[] WalkSprites = null;
10
11 //Sprites for attack animation
12 public SpriteRenderer[] AttackSprites = null;
13
14 //Default Sprite (neutral state)
15 public SpriteRenderer DefaultSprite = null;
16
17 //--
18 //Event called when damaged by an attack
19 public void Damage(int Damage = 0)
20 {
21 //Reduce health
22 Health -= Damage;
23
24 //Play damage animation
25 gameObject.SendMessage("PlayColorAnimation",0,SendMessageOptions.

DontRequireReceiver);
26
27 //Check if dead
28 if(Health <= 0)
29 {
30 //Send enemy destroyed notification
31 GameManager.Notifications.PostNotification(this, "EnemyDestroyed");
32
33 //Remove object from scene
34 DestroyImmediate(gameObject);
35
36 //Clean up old listeners
37 GameManager.Notifications.RemoveRedundancies();
38 }
39 }

244 CHAPTER 7: Enemies

40 //--
41 //Handle patrol state
42 public void Patrol()
43 {
44 //Hide default and attack sprites
45 foreach(SpriteRenderer SR in AttackSprites)
46 SR.enabled=false;
47
48 //Hide default sprite
49 DefaultSprite.enabled = false;
50
51 //Entered patrol state
52 SendMessage ("StopSpriteAnimation", ((int)ENEMY_STATE.PATROL),

SendMessageOptions.DontRequireReceiver);
53 SendMessage ("StopSpriteAnimation", ((int)ENEMY_STATE.ATTACK),

SendMessageOptions.DontRequireReceiver);
54 SendMessage("PlaySpriteAnimation", ((int)ENEMY_STATE.PATROL),

SendMessageOptions.DontRequireReceiver);
55 }
56 //--
57 }
58 //--

Now the Enemy_Drone integrates with the pathfinding functionality coded into its base, at least for the

Patrol state. Take it for a test run and see the Enemy run along, his legs in motion (also see Figure 7-16).

Figure 7-16. Enemy in motion!

245CHAPTER 7: Enemies

In observing the motion and movement of the Enemy in general, you may want to tweak his speed

and pathfinding size. Perhaps when moving, the Enemy’s arms or legs, or the fringes of his body,

sometimes penetrate through the wall and other obstacles. This is because pathfinding calculates

object position and motion using an invisible cylinder object. The idea is to size and position the

cylinder to act as a bounding volume. These settings can be controlled by the NavMeshAgent

component (see Figure 7-17). Here, I’ve set the agent Speed to 2 (units per second), the Stopping

Distance to 1.5, the cylinder Radius to 0.69, and the cylinder Height to 2.3.

Figure 7-17. Sizing the Enemy pathfinding cylinder: this can improve agent navigation and behavior

246 CHAPTER 7: Enemies

The Chase and Attack States
Having seen the fundamentals of creating an FSM through previous sections, let’s now put it all

together. Here we’ll finalize the enemy Drone character, complete with Patrol, Chase, and Attack

states. Consider Listings 7-9 and 7-10 for the complete Enemy class and the relevant changes to the

Enemy_Drone classes. Get ready for some longer code listings! Comments on critical code additions

and changes follow.

Listing 7-9. Final Enemy.cs Class with a Completed FSM

001 //Sets up FSM for enemy AI
002 //--
003 using UnityEngine;
004 using System.Collections;
005 using System.Collections.Generic;
006 //--
007 public class Enemy : MonoBehaviour
008 {
009 //Enemy types
010 public enum ENEMY_TYPE {Drone = 0, ToughGuy = 1, Boss=2};
011
012 //Type of this enemy
013 public ENEMY_TYPE Type = ENEMY_TYPE.Drone;
014
015 //Custom ID of this enemy
016 public int EnemyID = 0;
017
018 //Current health of this enemy
019 public int Health = 100;
020
021 //Attack Damage - amount of damage this enemy deals to player when attacking
022 public int AttackDamage = 10;
023
024 //Recovery delay in seconds after launching an attack
025 public float RecoveryDelay = 1.0f;
026
027 //Enemy cached transform
028 protected Transform ThisTransform = null;
029
030 //--
031 //AI Properties
032
033 //Reference to NavMesh Agent component
034 protected NavMeshAgent Agent = null;
035
036 //Reference to active PlayerController component for player
037 protected PlayerController PC = null;
038
039 //Reference to Player Transform
040 protected Transform PlayerTransform = null;
041

247CHAPTER 7: Enemies

042 //Total distance in Unity Units from current position that agent can wander when patrolling
043 public float PatrolDistance = 10.0f;
044
045 //Total distance enemy must be from player, in Unity Units, before chasing them

(entering chase state)
046 public float ChaseDistance = 10.0f;
047
048 //Total distance enemy must be from player before attacking them
049 public float AttackDistance = 0.1f;
050
051 //Enum of states for FSM
052 public enum ENEMY_STATE {PATROL = 0, CHASE = 1, ATTACK=2};
053
054 //Current state of enemy - default is patrol
055 public ENEMY_STATE ActiveState = ENEMY_STATE.PATROL;
056
057 //--
058 //Called on object start
059 protected virtual void Start()
060 {
061 //Get NavAgent Component
062 Agent = GetComponent<NavMeshAgent>();
063
064 //Get Player Controller Component
065 GameObject PlayerObject = GameObject.Find("Player");
066 PC = PlayerObject.GetComponentInChildren<PlayerController>();
067
068 //Get Player Transform
069 PlayerTransform = PC.transform;
070
071 //Get Enemy Transform
072 ThisTransform = transform;
073
074 //Set default state
075 ChangeState(ActiveState);
076 }
077 //--
078 //Change AI State
079 public void ChangeState(ENEMY_STATE State)
080 {
081 //Stops all AI Processing
082 StopAllCoroutines();
083
084 //Set new state
085 ActiveState = State;
086

248 CHAPTER 7: Enemies

087 //Activates new state
088 switch(ActiveState)
089 {
090 case ENEMY_STATE.ATTACK:
091 StartCoroutine(AI_Attack());
092 SendMessage("Attack", SendMessageOptions.DontRequireReceiver);

//Notify Game Object
093 return;
094
095 case ENEMY_STATE.CHASE:
096 StartCoroutine(AI_Chase());
097 SendMessage("Chase", SendMessageOptions.DontRequireReceiver);

//Notify Game Object
098 return;
099
100 case ENEMY_STATE.PATROL:
101 StartCoroutine(AI_Patrol());
102 SendMessage("Patrol", SendMessageOptions.DontRequireReceiver);

//Notify Game Object
103 return;
104 }
105 }
106 //--
107 //AI Function to handle patrol behaviour for enemy
108 //Can exit this state and enter chase
109 IEnumerator AI_Patrol()
110 {
111 //Stop Agent
112 Agent.Stop();
113
114 //Loop forever while in patrol state
115 while(ActiveState == ENEMY_STATE.PATROL)
116 {
117 //Get random destination on map
118 Vector3 randomPosition = Random.insideUnitSphere * PatrolDistance;
119
120 //Add as offset from current position
121 randomPosition += ThisTransform.position;
122
123 //Get nearest valid position
124 NavMeshHit hit;
125 NavMesh.SamplePosition(randomPosition, out hit, PatrolDistance, 1);
126
127 //Set destination
128 Agent.SetDestination(hit.position);
129
130 //Set distance range between object and destination to classify as 'arrived'
131 float ArrivalDistance = 2.0f;
132
133 //Set timeout before new path is generated (5 seconds)
134 float TimeOut = 5.0f;
135

249CHAPTER 7: Enemies

136 //Elapsed Time
137 float ElapsedTime = 0;
138
139 //Wait until enemy reaches destination or times-out, and then get new

position
140 while(Vector3.Distance(ThisTransform.position, hit.position) >

ArrivalDistance && ElapsedTime < TimeOut)
141 {
142 //Update ElapsedTime
143 ElapsedTime += Time.deltaTime;
144
145 //Check if should enter chase state
146 if(Vector3.Distance(ThisTransform.position, PlayerTransform.position)

< ChaseDistance)
147 {
148 //Exit patrol and enter chase state
149 ChangeState(ENEMY_STATE.CHASE);
150 yield break;
151 }
152
153 yield return null;
154 }
155 }
156 }
157 //--
158 //AI Function to handle chase behaviour for enemy
159 //Can exit this state and enter either patrol or attack
160 IEnumerator AI_Chase()
161 {
162 //Stop Agent
163 Agent.Stop();
164
165 //Loop forever while in chase state
166 while(ActiveState == ENEMY_STATE.CHASE)
167 {
168 //Set destination to player
169 Agent.SetDestination(PlayerTransform.position);
170
171 //Check distances and state exit conditions
172 float DistanceFromPlayer = Vector3.Distance(ThisTransform.position,

PlayerTransform.position);
173
174 //If within attack range, then change to attack state
175 if(DistanceFromPlayer < AttackDistance) {ChangeState(ENEMY_STATE.ATTACK);

yield break;}
176
177 //If outside chase range, then revert to patrol state
178 if(DistanceFromPlayer > ChaseDistance) {ChangeState(ENEMY_STATE.PATROL);

yield break;}
179

250 CHAPTER 7: Enemies

180 //Wait until next frame
181 yield return null;
182 }
183 }
184 //--
185 //AI Function to handle attack behaviour for enemy
186 //Can exit this state and enter either patrol or chase
187 IEnumerator AI_Attack()
188 {
189 //Stop Agent
190 Agent.Stop();
191
192 //Elapsed time - to calculate strike intervals
193 float ElapsedTime = RecoveryDelay;
194
195 //Loop forever while in chase state
196 while(ActiveState == ENEMY_STATE.ATTACK)
197 {
198 //Update elapsed time
199 ElapsedTime += Time.deltaTime;
200
201 //Check distances and state exit conditions
202 float DistanceFromPlayer = Vector3.Distance(ThisTransform.position,

PlayerTransform.position);
203
204 //If outside chase range, then revert to patrol state
205 if(DistanceFromPlayer > ChaseDistance) {ChangeState(ENEMY_STATE.PATROL);

yield break;}
206
207 //If within attack range, then change to attack state
208 if(DistanceFromPlayer > AttackDistance) {ChangeState(ENEMY_STATE.CHASE);

yield break;}
209
210 //Make strike
211 if(ElapsedTime >= RecoveryDelay)
212 {
213 //Reset elapsed time
214 ElapsedTime = 0;
215 SendMessage("Strike",SendMessageOptions.DontRequireReceiver);
216 }
217
218 //Wait until next frame
219 yield return null;
220 }
221 }
222 }
223 //--

251CHAPTER 7: Enemies

	Lines 34 and 43. Notice the additional member variable declarations that were

used in previously coded listings for accessing the NavMeshAgent component

and generating random destinations within the scene, for use with the

Patrol state.

	Lines 160–183. The AI_Chase coroutine defines the Chase state behavior. In

short, this function uses the Agent.SetDestination function to specify the Player

as the travel destination for the Enemy, since the Enemy must follow the Player.

The state will transition to another when the Player leaves the chase distance,

or when the Enemy is close enough to attack. The exact attack range for an

Enemy will vary, depending on the Enemy type. For example, Enemies with gun

weapons will feature a longer attack range.

	Lines 187–221. The AI_Attack coroutine handles the attack behavior for the

Enemy. From lines 211–219, the Enemy loops in an attack mode, and issues a

strike (or an attack), allowing for an intervening recovery or reload delay for its

weapon, for each strike. Each attack will invoke a Strike function call on the

object (in line 215), allowing each unique Enemy type to handle its own attack

differently, if required. It’s generally good practice to make base classes as

abstract as possible, allowing derived classes to customize functionality as far

as needed.

Listing 7-10. Relevant Additions to the Enemy Drone Class

01 //--
02 //Handle Chase State
03 public void Chase()
04 {
05 //Same animations as patrol
06 Patrol();
07 }
08 //--
09 //Entered Attack State
10 public void Attack()
11 {
12 //Hide default and walk sprites
13 foreach(SpriteRenderer SR in WalkSprites)
14 SR.enabled=false;
15
16 //Hide default sprite
17 DefaultSprite.enabled = false;
18
19 //Entered attack state
20 SendMessage ("StopSpriteAnimation", ((int)ENEMY_STATE.PATROL),

SendMessageOptions.DontRequireReceiver);
21 SendMessage ("StopSpriteAnimation", ((int)ENEMY_STATE.ATTACK),

SendMessageOptions.DontRequireReceiver);
22 SendMessage("PlaySpriteAnimation", ((int)ENEMY_STATE.ATTACK),

SendMessageOptions.DontRequireReceiver);
23 }
24 //--

252 CHAPTER 7: Enemies

25 //Strike - called each time the enemy makes a strike against the player (deal damage)
26 public void Strike()
27 {
28 //Damage player
29 PC.gameObject.SendMessage("ApplyDamage", AttackDamage,

SendMessageOptions.DontRequireReceiver);
30 }
31 //--

	Lines 26–30. The most noteworthy functionality for the Enemy_Drone here

concerns the attacking functionality. Here, the Strike function is called from

the base class Enemy to implement damage-dealing to the Player. To achieve

this, the Enemy invokes the ApplyDamage function on the Player, which both

deals damage and plays the red-flash animation (created in Chapter 5 using

procedural textures).

Let’s now apply these code changes and take CMOD for a test run to see the complete FSM for the

enemy Drone character in action. On pressing Play, you’ll have an Enemy that patrols, chases, and

attacks! As a gamer, it can be difficult to observe the Patrol state fully with the complete FSM. This is

because, typically, the Enemy will see and chase the Player whenever the Player enters the Enemy’s

line of sight. So, if you can see the Enemy in-game, he’s probably already in the Chase or Attack

state—coming to get you. But Unity makes it easy to test functionality for all states, by observing

out-of-sight enemy movements in the Scene viewport, as opposed to the Game viewport. You can

align the viewports side by side and debug as much as you need (see Figure 7-18).

Figure 7-18. Testing Enemy AI. Using a split screen view, between the Scene and Game viewports, to observe enemy movement

in all three states

253CHAPTER 7: Enemies

Adding More Enemy Types
Implementation of the Drone enemy is now completed, which means we can “Prefab” him! That is,

we can now create a Prefab for this enemy, ready to duplicate and position him in the level wherever

we need additional Drone enemies. But, of course, CMOD will feature more than simply the Drone

enemies; there’s the Tough Guy and Mr. Big Cheese, too. They are tougher and meaner Enemies.

However, their implementation requires only two additional classes, one for each Enemy type:

Enemy_ToughGuy and Enemy_Boss. Both of these classes will derive from the base Enemy class. This

means that all the core AI functionality and behavior inherited by the Drone will also be inherited by

the Tough Guy and Mr. Big Cheese.

In fact, the only critical ways in which the Tough Guy and Mr. Big Cheese differ from the Drone, and

from each other, is in terms of their damage strength, their health, and their attack range. In all other

respects, all of the Enemies are identical—even though they may seem very different to the gamer. This

is significant because it shows that, through class inheritance and by using varied assets, it’s possible

to create the appearance of great variety and divergence atop a common and shared codebase.

Given the similarities between the Enemy types, the source code for the Tough Guy and Mr. Big

Cheese will not be listed here, although it can be found in the book companion files for Chapter 7,

should you need further guidance on how to implement additional enemies. Take a look at Figure 7-19

for a level full of dangerous Enemies. Congratulations! You’ve now implemented another critical and

core mechanic into the FPS game CMOD.

Note Be sure to configure the attack, patrol, and chase distances for the Enemy component in the Object

Inspector. For the Drone, I’ve used a Chase of 10, a Patrol of 30, and an Attack of 2. Also be sure to set the

Stopping Distance of the NavMeshAgent component to 1.5 or less, to stop the Enemy from walking through

the Player, but to allow enough “closeness” to make an attack possible.

Figure 7-19. CMOD, up and running with multiple Enemy types

254 CHAPTER 7: Enemies

Summary
By now, CMOD is really looking good! We have almost everything we need for an enjoyable game:

a Player character, an environment to explore, power-ups, weapons, interesting enemies, and—in

addition—the enemies are intelligent. Next up, we’ll consider the issue of graphical user interfaces

(GUIs) to add further polish to the game. Specifically, we’ll create a main menu for the game,

allowing the gamer to restart, exit, and load and save the game. At this point, you should be able to

do the following:

Create an Enemy prefab	
Create a Drone, Tough Guy, and Mr. Big Cheese enemy	
Understand how to deal and receive damage to and from the Player	
Understand what AI is and its purpose in games	
Understand what an FSM is and how it works	
Create an FSM for the Enemy character AI	
Understand the NavMeshAgent component and how it works with NavMeshes	
Understand what pathfinding and navigation is	
Create C# script files that use the navigation system	
Create agents that can move around the scene intelligently	
Create different Enemy types through class inheritance	

255

Chapter 8
Graphical User Interfaces

In this chapter we’ll create a basic graphical user interface (GUI) system for CMOD. This includes

a main menu and a HUD (head-up display). The main menu will appear when the user presses the

Escape key on the keyboard, allowing him to restart, load, save, and exit the game. And the head-up

display will continually show Player health, as well as the ammo status for the active weapon. In

creating the GUI, we’ll explore a range of subjects, including screen dimensions, the aspect ratio,

widgets, anchoring, GUI scaling, and resolution independence. As always, these subjects apply

practically, not just for CMOD or Unity specifically, but for game engines and games, as well as

software and web sites in general. So, let’s get started with creating GUIs.

GUIs in Games
Graphical user interfaces refer to, in sum, all 2D graphics rendered in screen space, such as

menus, health bars, and buttons. These let the gamer interact with the game, performing critical

functions. Using GUIs, gamers can load and save their game states, monitor their health status,

consult minimaps and radar displays, see the ammo status of their weapons, and lots more besides,

depending on the types of games they’re playing.

GUIs are, in many respects, unique among all other assets and objects in a video game. Specifically,

they’re not supposed to exist within the game world itself. Enemies, like the drone and boss

characters for CMOD, live within the game world and interact directly with the Player, attacking or

chasing. Weapons and props also exist in game space; they can be collected and used by the Player

to attack Enemies. With these objects and more, the Player can do things, and the presence of these

objects makes a substantive difference on the course of events in-game. But GUIs are different.

They work at a different level; existing outside the game space, and working at a level of abstraction

from the game. Their purpose is either to provide information in an augmented reality sense, such as

displaying the health status of the Player, or to provide access to fundamental game functionality at

a system level, such as exiting, restarting, or pausing the game.

256 CHAPTER 8: Graphical User Interfaces

It’s perhaps this logistical distinctiveness of GUIs that have historically made them an uneasy and

awkward fit in the feature-set of most 3D engines. Most engines have legacy features and editor

quirks for GUIs, which are the direct result of attempts over time by engine developers to rethink

and reinvent how GUI development could optimally work with the rest of the 3D development tools.

The hope of most game developers is to have a fully functional 2D GUI editor, complete with GUI

widgets and controls like those in popular GUI IDEs (integrated development environments), such

as the Qt framework, the Embarcadero C++Builder, or the .NET Framework. But this dream has still

not been realized in most engines, at the time of writing. This has made GUI development for games

a comparatively laborious and messy affair. One common solution in engines today is to simply

disregard support for any native GUI development. With this solution, GUI development is typically

delegated entirely to third-party tools, like Adobe Flash. From here, the engine offers support by

allowing a compiled Flash presentation to be embedded into and connected to the game through

add-ons and plug-ins like Autodesk Scaleform.

Unity, however, doesn’t take the Scaleform approach natively. Instead, it makes an attempt to offer

native GUI development features. Until Unity 4.3, it offered these almost exclusively through the GUI

class. More information on this class can be found at https://docs.unity3d.com/Documentation/
Components/GUIScriptingGuide.html. However, this class became unpopular among many developers

for performance reasons. And many developers even abandoned the GUI class entirely, coding their

own custom GUI solutions from the ground upward, or else they used a range of third-party GUI

frameworks from the Unity Asset Store.

But since version 4.3, newer and easier possibilities beyond the GUI class have emerged through the

added 2D functionality and sprite features; and (as I write this) it is expected that there will be even

more GUI functionality and further developments in an upcoming Unity 4.6 release. This release is

not available to me at the time of writing this chapter, but it may be available to you when you are

reading this chapter.

In short, this chapter will explore GUI development almost entirely with the Unity 4.3 sprite

functionality, along with orthographic cameras (as explained in Chapter 6 when creating weapons).

It may be that upcoming GUI features—whatever they are—will make GUI development even easier

than the methods I’ve outlined here, but nonetheless, the methods here should remain valid and

applicable to later versions, too, and even apply in principle to other engines supporting similar 2D

sprite functionality.

Getting Started with GUIs
Since we’ll be using the Unity 4.3 2D sprite functionality to create a GUI for CMOD, our first steps

in GUI development will resemble the first steps for creating weapons. Specifically, we’ll create an

orthographic camera in the scene (to render graphics in 2D), with a Depth Only value set for the

Clear Flag field in the Object Inspector. And we’ll also restrict camera rendering to only a designated

GUI layer using the Culling Mask field. More in-depth instructions on how to configure a dedicated

2D camera in Unity is covered in Chapter 6. You can also see the GUI camera setup and object

arrangement I’ve used in Figure 8-1 (and this project is included in the book companion files

/Chapter08/).

https://docs.unity3d.com/Documentation/Components/GUIScriptingGuide.html
https://docs.unity3d.com/Documentation/Components/GUIScriptingGuide.html

257CHAPTER 8: Graphical User Interfaces

Notice that I’ve grouped the GUI camera as a child object beneath an empty game object named

GUI to organize and group together all GUI elements in the scene. This is not essential, but

recommended. Take care to assign the GUI camera a unique and highest value for Depth (I’ve used

two here) to ensure it renders on top or in front of all other scene objects. This is important because

GUI objects should appear in front of everything else in-game, except for a mouse cursor graphic

and other input helpers (like gizmos), if your game supports them.

We’ve now created an orthographic camera in the scene for displaying a GUI. One of the most

notable features of a GUI camera is that all GUI graphics will be rendered in screen space in pixels.

To make this kind of GUI-rendering easier and more intuitive, it’ll be useful to customize the camera

further through a C# script, in a GUICam class. First, since it’s possible for the game window to

change size during gameplay (such as when the user resizes the window), we’ll want to update the

Orthographic Size field of the camera on each frame, to ensure that its orthographic size will always

render world units to pixels at a 1:1 ratio. Second, because all GUI elements (such as buttons and

windows) will render together in a single orthographic coordinate system, it’ll be useful to set the

origin of the coordinate space (0,0) at the top-left corner of the screen, as opposed to the center.

This means the bottom-right corner will always be screen width, screen height (whatever the screen

width and height is). To achieve this behavior, consider Listing 8-1 for GUICam.cs, which is attached

as a component to the GUI camera.

Listing 8-1. GUICam.cs: Customizing a GUI Camera

01 //---
02 using UnityEngine;
03 using System.Collections;
04 [ExecuteInEditMode]
05 //---
06 public class GUICam : MonoBehaviour
07 {
08 //Camera Component
09 private Camera Cam = null;
10

Figure 8-1. Configuring a dedicated UI camera

258 CHAPTER 8: Graphical User Interfaces

11 //Pixel to World Scale
12 public float PixelToWorldScale = 200.0f;
13
14 //Cached transform for camera
15 private Transform ThisTransform = null;
16 //---
17 // Use this for initialization
18 void Start ()
19 {
20 //Get camera component for GUI
21 Cam = GetComponent<Camera>();
22
23 //Get camera transform
24 ThisTransform = transform;
25 }
26 //---
27 // Update is called once per frame
28 void Update ()
29 {
30 //Update camera size
31 Cam.orthographicSize = Screen.height/2/PixelToWorldScale;
32
33 //Offset camera so top-left of screen is position (0,0) for game objects
34 ThisTransform.localPosition = new Vector3(Screen.width/2/PixelToWorldScale, -

(Screen.height/2/PixelToWorldScale), ThisTransform.localPosition.z);
35 }
36 //---
37 }
38 //---

	Line 04. The [ExecuteInEditMode] directive allows all instances of the class in

the scene to run in Edit mode, as well as Play mode. Doing this for GUI classes

allows you to get real-time previews of your GUIs and arrangements from the

Game tab in the Editor, as we’ll see later.

	Line 34. The position of the camera in the scene is offset away from the local

origin (the origin of the parent object) so that any other sibling objects will be

rendered as though they were offset from the top-left corner of the screen.

Resolution Dependence and Independence
Now that we have a GUI camera in place in the scene, we can start thinking carefully about adding

GUI widgets to the mixture—that is, visual controls (such as buttons and images) constituting the GUI.

When considering this (specifically, considering how to position and draw GUI graphics on-screen),

a very significant problem arises relating to screen sizes. The problem is that different devices,

hardware, and systems support different resolutions (pixel dimensions), and so your game may not

always appear at single, default resolution. You can, of course, configure your game in Unity (through

Player Settings) to run at only one resolution, rejecting all other resolutions, but this exclusionary

259CHAPTER 8: Graphical User Interfaces

tactic will severely limit the kinds of devices your game can support, and will also frustrate users who

like more control over how their games are displayed. Furthermore, some mobile devices (in their

default state) don’t allow users to change the resolution.

So, a more positive response from game developers is to create a single GUI with the intention of

supporting as many different screen sizes as possible. But this has troublesome implications for

GUIs, which are rendered in screen space and are intimately linked to pixels and to pixel positions.

In particular, if you can’t know in advance which screen size a gamer will use for your game, then you

can’t reliably position GUI elements on screen in terms of pixels and expect a consistent experience

and look for all users. While 512 pixels is the horizontal center for a 1024 pixels–wide display, it will

not be so for a 2048 pixels–wide display (there, it’ll be a quarter width). And this problem applies

for any screen sizes and for both dimensions (X and Y), across all devices and all pixel values. This

tells us that specifying the positions of GUI elements in absolute pixel values can’t help much, if we

want to create multiresolution compliant GUIs—that is, a single GUI system that works across all

resolutions (resolution independence). One solution to this problem (chosen here) is to develop a

relative positioning scheme, known as anchoring. Consider Figure 8-2.

Figure 8-2. Configuring a dedicated UI camera

Using anchoring, positions are specified not in terms of absolute pixels, but as normalized offsets

from a fixed and static screen position known to remain constant across all possible resolutions.

In Figure 8-2, the screen center is specified as (0.5, 0.0) from a left-center anchor on screen. Thus,

the left-center anchor is positioned at (0.0, 0.5), and is always half the vertical height of the screen.

And the anchored square at the screen center is offset from that point by (0.5, 0.0), meaning half

the horizontal width of the screen. This form of relative positioning is powerful because it lets you to

resolve screen positions across multiple resolutions, simply by expressing positions as proportions

rather than absolute pixels. With this technique in mind, let’s create a GUIObject class, which will

act as a relative-positioning component for any GUI objects we create. This component will be a

260 CHAPTER 8: Graphical User Interfaces

“base” component in that all GUI game objects (at least, those wanting to be positioned relatively)

should have the GUIObject component attached (see Listing 8-2 for the full GUIObject source code).

Comments follow.

Listing 8-2. GUIObject.cs: A GUI Positioning Component

01 //--
02 using UnityEngine;
03 using System.Collections;
04 [ExecuteInEditMode]
05 //--
06 public class GUIObject : MonoBehaviour
07 {
08 [System.Serializable]
09 public class PixelPadding
10 {
11 public float LeftPadding;
12 public float RightPadding;
13 public float TopPadding;
14 public float BottomPadding;
15 }
16
17 //Pixel Padding
18 public PixelPadding Padding;
19
20 //HALIGN
21 public enum HALIGN {left=0, right=1};
22
23 //VALIGN
24 public enum VALIGN {top=0, bottom=1};
25
26 //Alignment
27 public HALIGN HorzAlign = HALIGN.left;
28 public VALIGN VertAlign = VALIGN.top;
29
30 //Reference to GUICamera for this object
31 public GUICam GUICamera = null;
32
33 //Reference to cached transform
34 private Transform ThisTransform = null;
35
36 //--
37 // Use this for initialization
38 void Start ()
39 {
40 //Get cached transform
41 ThisTransform = transform;
42 }
43 //--

261CHAPTER 8: Graphical User Interfaces

44 // Update is called once per frame
45 void Update ()
46 {
47 //Calculate position on-screen
48 Vector3 FinalPosition = new Vector3(HorzAlign == HALIGN.left ? 0.0f : Screen.width,
49 VertAlign == VALIGN.top ? 0.0f : -Screen.height,
50 ThisTransform.localPosition.z);
51
52 //Offset with padding
53 FinalPosition = new Vector3(FinalPosition.x + (Padding.LeftPadding *

Screen.width) - (Padding.RightPadding * Screen.width), FinalPosition.y -
(Padding.TopPadding * Screen.height) + (Padding.BottomPadding * Screen.height),
FinalPosition.z);

54
55 //Convert to pixel scale
56 FinalPosition = new Vector3(FinalPosition.x / GUICamera.PixelToWorldScale,

FinalPosition.y / GUICamera.PixelToWorldScale, FinalPosition.z);
57
58 //Update position
59 ThisTransform.localPosition = FinalPosition;
60 }
61 //--
62 }
63 //--

	Line 08. Here, the [System.Serializable] directive is used to declare the

class PixelPadding to be a serializable class. This means that any instances

of the class, and its members, will be accessible and editable via the Object

Inspector in the Unity Editor. This directive is significant for member variable

Padding, declared at line 18. This member is viewable and editable in the Object

Inspector (see Figure 8-3).

Figure 8-3. Starting to create a menu object . . .

262 CHAPTER 8: Graphical User Interfaces

	Lines 9–15. The pixel padding class specifies the amount of padding to be

added onto an anchor to offset the GUI onto the screen into its desired position.

Though the member is called pixel padding, the value is specified in relative

terms (using normalized values, between 0 and 1), as shown in Figure 8-2. The

word pixel in the title emphasizes that, whatever relative values are used, the

values ultimately resolve to pixel values, depending on the screen resolution.

	Lines 27 and 28. Here, two member variables are added to indicate the

anchoring for the GUI control on both the horizontal and vertical axes. Left or

Right, and Top and Bottom. Thus, to anchor this GUI object to the screen’s

top-left, HorzAlign should be Left, and VertAlign should be Top.

	Lines 45–60. The Update function calculates the position of the control, based

on its anchoring and padding values, as well as the orthographic size of the GUI

camera, ensuring the object is positioned and scaled correctly on screen.

To put our newly coded GUI object into practice, let’s begin work on creating the game’s main menu.

Right now, we don’t have all the code we need—after all, we’ll need additional code to actually

render the menu on-screen using sprites. But, right now, we have some core relative-positioning

functionality to get us started. For the menu, create a new object in the scene, taking care to add it

to a GUI layer and to assign the GUICamera field to the GUICamera object in the scene. And then

add a GUIObject component to it. For CMOD, the menu graphic should be centered on-screen.

Therefore, HorzAlign should be Left, VertAlign should be Top. Left Padding should be 0.5, and

Top Padding should be 0.5 (see Figure 8-3). In the next section, Figure 8-4 displays the complete

menu graphic.

Figure 8-4. The main menu background graphic (559×549 pixels), to be positioned at screen center (0.5, 0.5)

263CHAPTER 8: Graphical User Interfaces

Main Menu and Aspect Ratio
The relative anchoring system created in the previous section works insofar as it will position

graphical elements on the screen consistently across multiple resolutions, as we’ll see shortly. The

system could, of course, be taken even further to support hierarchical anchoring with multiple local

spaces and embedded offsets. But this kind of elaboration and additional complexity will not be

required for CMOD. Here, the system will be used to position a menu and its buttons on the screen.

The menu is shown in Figure 8-4.

When considering the main menu graphic, as well as any other GUI graphic, a new problem presents

itself. Even though the menu will always be positioned at screen center (0.5, 0.5), there are still

questions: What should the size and the dimensions of the menu be? Should we simply render the

menu at its default size (559×549 pixels) for every resolution? Or should we scale the graphic up or

down to always encompass the same screen proportions for every resolution (a relative size)? If we

accept the first solution (an absolute size), then (like absolute positioning) we place concrete limits

on the number of resolutions we can practically support: specifically, we cannot support resolutions

smaller than the menu graphic, otherwise the menu will not fit entirely on the screen (the edges will

be cut off). Additionally, if the screen resolution is much larger than expected, the menu may appear

much smaller than desired at the screen’s center. Now, the second option is to use scaling. This is

one route we could take to support every possible resolution, but it entails complications due to

aspect ratio. What are those complications? How do we overcome them? And what is aspect ratio

anyway?

Aspect ratio is the relationship between the screen width and the screen height in pixels. Aspect

ratio can be calculated using the formula AR = Screen Width/Screen Height. This decimal can

resolve to a simplified ratio. The most common ratios are: 4:3, 5:4, 16:10, and 16:9 (widescreen).

The problem with aspect ratio regarding image scaling is that an image (like the menu) made at

one resolution and aspect ratio cannot be up- or downscaled to a different size and aspect ratio

without distortion. Specifically, an image scaled across multiple aspect ratios will scale nonuniformly:

it’ll either appear more squashed or more expanded in one dimension only. This can lead to ugly

graphics. So, the solution that developers have traditionally sought has been to either create multiple

versions of GUI graphics at different aspect ratios, switching between the versions at runtime to

accommodate the active resolution, or to scale the graphics uniformly (in both dimensions) within

certain constraints to accommodate the active resolution to an extent, but avoiding graphical

distortions at the same time.

For CMOD, however, we’ll take the former approach of avoiding the scaling issue altogether. We’ll

use a fixed size for the menu, setting the minimum resolution at 1024×768, meaning that the menu

will show at this resolution and higher. With this solution in mind, we can create the following new

GUI class for rendering the menu graphic (see Listing 8-3).

264 CHAPTER 8: Graphical User Interfaces

Listing 8-3. GUIOptions.cs: A Class for the Main Menu

01 //--
02 //Class for menu functionality
03 using UnityEngine;
04 using System.Collections;
05 //--
06 public class GUIOptions : MonoBehaviour
07 {
08 //Sprite Renderer for menu
09 private SpriteRenderer SR = null;
10
11 //Collision objects for buttons
12 private BoxCollider[] Colliders = null;
13
14 //--
15 // Use this for initialization
16 void Start ()
17 {
18 //Get sprite renderer
19 SR = GetComponent<SpriteRenderer>();
20
21 //Get button colliders
22 Colliders = GetComponentsInChildren<BoxCollider>();
23
24 //Add listeners
25 GameManager.Notifications.AddListener(this, "ShowOptions");
26 GameManager.Notifications.AddListener(this, "HideOptions");
27
28 //Hide menu on startup
29 HideOptions(null);
30 }
31 //--
32 //Hide options event
33 public void HideOptions(Component Sender)
34 {
35 SetOptionsVisible(false);
36 }
37 //--
38 //Show options event
39 public void ShowOptions(Component Sender)
40 {
41 SetOptionsVisible();
42 }
43 //--
44 //Function to show/hide options
45 private void SetOptionsVisible(bool bShow = true)
46 {
47 //If enabling, then pause game - else resume
48 Time.timeScale = (bShow) ? 0.0f : 1.0f;
49

265CHAPTER 8: Graphical User Interfaces

50 //Enable/Disable input
51 GameManager.Instance.InputAllowed = !bShow;
52
53 //Show/Hide menu graphics
54 SR.enabled = bShow;
55
56 //Enable/Disable button colliders
57 foreach(BoxCollider B in Colliders)
58 B.enabled = bShow;
59 }
60 //--
61 //Watch escape key input
62 void Update()
63 {
64 //If escape key pressed
65 if(Input.GetKeyDown(KeyCode.Escape))
66 SetOptionsVisible(!SR.enabled);
67 }
68 //--
69 }

	Line 09. Features the main reference to a Sprite Renderer component for

drawing the main menu graphic to the screen. This will refer to a sprite from the

project atlas texture. The object reference is retrieved during the Start function,

at line 19.

	Line 12. Features an array of collider objects, which will be used later in the

chapter to represent clickable areas for the menu buttons. A reference to a

collider array is required to disable the colliders when the menu is hidden, to

prevent the gamer from clicking buttons when the menu is off-screen.

	Lines 45–59. The SetOptionsVisible function toggles the visibility of the menu.

Line 48 uses the TimeScale member of the native Time class to pause the game

when the menu is displayed. A TimeScale value of 1 represents normal speed,

a value of 0.5 represents half speed, and 0 means paused.

Note More information on the Time class and its TimeScale member can be found in the online Unity

documentation at http://docs.unity3d.com/Documentation/ScriptReference/Time-timeScale.html.

Let’s give this class a test, along with the GUIObject class coded in the previous section. By

adding both components to a single menu object, we can create a menu that displays and hides

on the screen by pressing the Escape key. Be sure to add a sprite component to the object, too,

referencing the menu object (spr_Menu) in the atlas texture. You can add a sprite component to an

object manually by choosing Component ➤ Rendering ➤ Sprite Renderer from the application

menu. Then from the Object Inspector, set the Sprite field to spr_Menu (see Figure 8-5).

http://docs.unity3d.com/Documentation/ScriptReference/Time-timeScale.html

266 CHAPTER 8: Graphical User Interfaces

Figure 8-5. Creating a main menu object from a combination of GUIObject, GUIOptions and a sprite renderer component

Notice in Figure 8-5 that the viewport texture-wire display shows the general sprite topology for the

menu object. Unity has autotopologized the mesh with multiple edges running downward through

the length of the sprite. This is more topology than really required for such a GUI sprite. In this

case, a quad mesh would be more suitable. You can change this, if you want, by selecting the atlas

texture in the Project panel, and from the Object Inspector, changing the Mesh Type from Tight to

Full Rect. This ensures all sprites in the atlas will use quad meshes rather than tightly generated

meshes. However, tightly generated meshes, conforming more closely to the sprite pixel data, can

result in more accurate collisions. You’ll need to make careful judgments about the mesh type most

appropriate for your sprites (see Figure 8-6).

267CHAPTER 8: Graphical User Interfaces

Testing the Main Menu
The GUI classes created so far all make use of the [ExecuteInEditMode] directive, meaning they run

and operate in the background, even when the Unity Editor is not in Play mode. This feature allows

us to preview and see the effects of our GUI in real time; but this comes with important limitations.

Specifically, we’ll need to use the Game tab (not the Scene tab) to preview our GUI, since this view

shows us the complete consolidation of scene cameras. So let’s switch to the Game tab; the GUI

menu is then displayed in the viewport (see Figure 8-7).

Figure 8-6. Changing the sprite Mesh Type from Tight to Full Rect

268 CHAPTER 8: Graphical User Interfaces

Figure 8-8. Testing real-time changes to the GUI

Figure 8-7. Previewing the GUI menu in the Game tab

Go ahead and tweak any GUI values in the Object Inspector, if required, and see the changes update

in real time in the Game tab. Further, change the game resolution, too, and see the menu adjust its

position to reflect the change, centering itself in the view regardless of the resolution. See Figure 8-8.

269CHAPTER 8: Graphical User Interfaces

Adding Buttons to the Main Menu
The main menu graphic in Figure 8-4 already features the button graphics “built-in”—that is, the

image already features the button objects. In most games, this will not be the case. Typically,

GUI button graphics are isolated as separate sprites and are overlaid atop the menu background

to support additional functionality, such as animations and hover states when the cursor moves

over the buttons. But here, the buttons are built into the menu, and this will still serve our needs.

Now, there are many ways the button functionality could be handled in CMOD; for example, each

button could detect presses as they happen, and then internally handle the responses, performing

appropriate on-click functionality. But for CMOD, our buttons will be “hollow” in the sense that

they’ll exist only to detect button presses, and then they’ll trigger a system-wide event using the

NotificationsManager, allowing any other listening processes to respond as needed when clicks

happen. Other processes, if any, will essentially handle button presses. To get started on creating

clickable buttons, create five new game objects, one for each button, as children of the menu,

resetting their transforms to (0, 0, 0). The buttons are named button_Cancel, button_Exit,

button_Load, button_Restart, and button_Save (see Figure 8-9).

Figure 8-9. Adding button objects to the scene as children of the menu object

Next, add a Box Collider component to each button object (Component ➤ Physics ➤ Box Collider)

to approximate the button volume on-screen to allow click detection. Use the Game tab to align

the colliders with the button graphics on the menu in the viewport. Remember, if you don’t see

the collider gizmo outline in the Game view, then click the Gizmos drop-down box to enable the

Colliders option (see Figure 8-10).

270 CHAPTER 8: Graphical User Interfaces

Each button will post a unique notification to the NotificationsManager when clicked, invoking

the kind of response required for the button, if any valid listeners are registered with the

NotificationsManager. To achieve this behavior, a new script should be created and added to each

button as a component—specifically a new class, called GUIEvent. Let’s create this script file now,

as shown in Listing 8-4.

Listing 8-4. GUIEvent.cs: Click Detection Functionality for the Button Objects

01 //Posts notification when gui element is clicked
02 //--
03 using UnityEngine;
04 using System.Collections;
05 //--
06 public class GUIEvent : MonoBehaviour
07 {
08 //Notification to send when activated
09 public string Notification = null;
10
11 //Check for input
12 void OnMouseDown()
13 {
14 GameManager.Notifications.PostNotification(this, Notification);
15 }
16 }
17 //--

Figure 8-10. Adding colliders for button objects on the menu

271CHAPTER 8: Graphical User Interfaces

Listing 8-4 and its general mechanics should look familiar now. If not, then jump back to Chapter 3

to consider the NotificationsManager, as a refresher. Add an instance of this class to each button

object, assigning the Notification member to a unique string describing the event to be generated

for that button instance. I’ve used the strings: HideOptions, ExitGame, LoadGame, RestartGame, and

SaveGame. You don’t need to use these names exactly for your own functions; but remember, these

names (whatever they are) should match the names of functions elsewhere that are intended to

handle the events when they happen through the NotificationsManager (see Figure 8-11 where the

GUIEvent component is assigned to button objects).

Figure 8-11. GUIEvent components are added to button objects in preparation for click detection and response

Before proceeding further to handle button clicks, I recommend testing the click-detection code

for your buttons to make sure they do actually detect clicks when they happen, as they should do.

You can achieve this easily by inserting a Debug.Log statement inside the OnMouseDown function of

GUIEvent, for example. If you’ve added a GUIEvent component but find that no button press is

detected, make sure your button has a collider component with depth in all three axes (not just two),

and also that your buttons and colliders are completely in front of the GUI camera. That is, no part

of the colliders should appear behind the camera. Otherwise, the click will probably not be detected

(see Figure 8-12).

272 CHAPTER 8: Graphical User Interfaces

Handling Button Presses
The buttons for the main menu GUI are almost empty shells. Their task is simply to post notifications

into the event system when clicks are made and the menu is visible. The real “core” functionality

to be invoked from button presses will actually occur in other classes listening for the button-press

events. The main menu supports the functions: Restart (to restart the level), Load Game (to restore

a previously saved game), Save Game (to save the current game state to persistent storage), Cancel

(to close the menu and resume the game), and Exit (to terminate the game). The next chapter

will consider the implementation of loading and saving games. In this section, we’ll perform the

Restart, Cancel, and Exit feature set. Actually, considering Listing 8-3, the GUIOptions class already

features the code we need to respond to menu cancelling. At line 26, the menu registers for the

HideOptions event, which is invoked when the Cancel button is pressed. The remaining two features,

Restart and Exit can be added into the GameManager (see Listing 8-5 for a revised Start function

for GameManager class, as well as the relevant methods; this class is also included in the book

companion files for /Chapter08/).

Figure 8-12. Configuring colliders to detect mouse down events

273CHAPTER 8: Graphical User Interfaces

Listing 8-5. Revised GameManager class to respond to menu button presses

01 //GameManager
02 //For high level control over game
03 //--
04 using UnityEngine;
05 using System.Collections;
06 //Game Manager requires other manager components
07 [RequireComponent (typeof (NotificationsManager))] //Component for sending and receiving notifications
08 //--
09 public class GameManager : MonoBehaviour
10 {
11 //--
12 //[Other GameManager code here...]
13 //--
14 // Use this for initialization
15 void Start ()
16 {
17 //Add cash collected listener to listen for win condition
18 Notifications.AddListener(this, "CashCollected");
19
20 //Add listeners for main menu
21 Notifications.AddListener(this, "RestartGame");
22 Notifications.AddListener(this, "ExitGame");
23 }
24 //--
25 //[Other GameManager code here...]
26 //--
27 //Restart Game
28 public void RestartGame()
29 {
30 //Load first level
31 Application.LoadLevel(0);
32 }
33 //--
34 //Exit Game
35 public void ExitGame()
36 {
37 Application.Quit();
38 }
39 //--
40 }

	Line 31. The Application.LoadLevel method is used to reload the active level,

effectively restarting the game.

	Line 37. Application.Quit is called to terminate the game. The code, as given

in line 37, only works when the game is running as a stand-alone application,

and not in the editor. For more information, see the following note.

274 CHAPTER 8: Graphical User Interfaces

HUD: Ammo and Health Statuses
CMOD now has a complete and working main menu for the GUI, except for load and save game

functionality, which are covered in the next chapter. Here, we’ll focus our attention on some basic

text displays for a head-up display using the font rendering features provided by the GUI class and

its associated structures. The text created will display the Player health and any remaining ammo for

the active weapon. To achieve this, two C# classes will be coded, namely a label class (GUILabel) for

displaying text, and a GUIUpdate class, which relies on the label classes to display text on the screen,

describing health and ammo. Let’s start with the label class, as shown in Listing 8-6.

Note Line 37 of Listing 8-5 will terminate game execution using the Application.Quit function. You

could adapt this code as follows to support application quitting from the editor, too:

#if UNITY_EDITOR

 UnityEditor.EditorApplication.isPlaying = false;

#else

 Application.Quit();

#endif

More information on the high-level Application class can be found in the Unity documentation at

https://docs.unity3d.com/Documentation/ScriptReference/Application.html.

Note A head-up display (or HUD) refers to all on-screen graphical displays that appear while the game is

being played (such as health bar and score).

Often, game developers avoid dynamic font rendering, as used here, for performance reasons. Instead, they

typically use a font atlas texture—that is, a texture file containing each alphanumeric character in a font set.

Text is then shown on-screen in-game like a regular sprite or texture, with various letters in the text combined

like sprites to form complete text statements and sentences. There are many programs available to produce

font atlas textures. One includes BMFont (www.angelcode.com/products/bmfont/). Dynamic fonts are

used here, however, to demonstrate basic GUI functionality and how to quickly render text on-screen. One

exceptional case to using atlas font textures might be rendering text from Asian-based languages, in which

the full character set is often too large to store inside a texture that performs well across multiple platforms.

https://docs.unity3d.com/Documentation/ScriptReference/Application.html
http://www.angelcode.com/products/bmfont/

275CHAPTER 8: Graphical User Interfaces

Listing 8-6. GUILabel.cs: Class for Rendering Text on Screen Using the GUI Framework

01 using UnityEngine;
02 using System.Collections;
03 [ExecuteInEditMode]
04 public class GUILabel : MonoBehaviour
05 {
06 //Content for label
07 public GUIContent LabelData;
08
09 //Style for label
10 public GUIStyle LabelStyle;
11
12 //Rect for label
13 public Rect LabelRegion;
14
15 //Draw label
16 void OnGUI()
17 {
18 Rect FinalRect = new Rect(LabelRegion.x * Screen.width, LabelRegion.y *

Screen.height, LabelRegion.width * Screen.width, LabelRegion.height * Screen.height);
19
20 GUI.Label(FinalRect, LabelData, LabelStyle);
21 }
22 }

	Lines 07, 10, and 13. The public members LabelData, LabelStyle, and

LabelRegion have been added to define the contents of a label (what it will say),

its style (how it will look), and its positional data (where it will appear on the

screen). These properties will all be accessible and customizable through the

Object Inspector when a Label component is added to an object.

	Line 20. The GUI.Label function is called on the OnGUI event to render the label

text to the screen with specified content, style, and size.

Note More information on the GUI classes can be found in the online Unity documentation at

http://docs.unity3d.com/Documentation/Components/gui-Basics.html.

We’ll need the label class to display the ammo count and Player health status. For this reason,

let’s add two label components to the root GUI object in the scene, by dragging and dropping the

GUILabel class onto the GUI object. Once added, configure each label through its Label Data, Label

Style and Label Region values in the Object Inspector (see Figure 8-13). For Label Data, the text

should be set to Health for the health label and to Ammo for the ammo label. For both labels, the

text color should be White. For the Label Style object, the Font Size should be 20. And for the Label

Region, the position of the health label is rendered at (0.01, 0.01), and the ammo label at (0.9, 0.01).

Notice the positions for each label are specified in screen relative coordinates.

http://docs.unity3d.com/Documentation/Components/gui-Basics.html

276 CHAPTER 8: Graphical User Interfaces

Further, as you configure each label’s content, style, and position data from the Object Inspector,

you’ll also see a real-time preview in the Game tab. This will appear after setting the font color, size,

text, and position (see Figure 8-14).

Figure 8-13. Configuring GUI labels for Player health and ammo

277CHAPTER 8: Graphical User Interfaces

Right now, the root GUI object features two label components that each display default static text for

both the ammo status and health status. This text currently never changes throughout gameplay, as

it is. So we’ll need to code extra functionality in the GUIUpdateStats class to update the label text on

each frame, displaying the latest Player health and ammo status as the game unfolds. The C# code

for this class is given in Listing 8-7. This class should also be added as a component to the root GUI

object, alongside the labels.

Listing 8-7. GUIUpdateStats.cs: Class for Updating GUI Text with Health and Ammo Status

01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class GUIUpdateStats : MonoBehaviour
06 {
07 //Player reference
08 private PlayerController PC = null;
09
10 //Health Label Component
11 public GUILabel HealthLabel = null;
12
13 //Ammo Label Component
14 public GUILabel AmmoLabel = null;
15

Figure 8-14. Previewing a GUI label in real time

278 CHAPTER 8: Graphical User Interfaces

Figure 8-15. Referencing label widgets in the GUIUpdateStats class, for rendering status text on the screen

16 //--
17 void Start()
18 {
19 //Get Player Controller Component
20 GameObject PlayerObject = GameObject.Find("Player");
21 PC = PlayerObject.GetComponentInChildren<PlayerController>();
22 }
23 //--
24 // Update is called once per frame
25 void Update ()
26 {
27 //Update health and ammo strings
28 AmmoLabel.LabelData.text = "Ammo: " + ((PC.ActiveWeapon.Ammo < 0) ? "None" :

PC.ActiveWeapon.Ammo.ToString());
29 HealthLabel.LabelData.text = "Health: " + Mathf.Clamp(PC.Health,0,100).ToString();
30 }
31 //--
32 }

	Line 29. The Mathf.Clamp utility function is used while constructing an ammo

string for the active weapon. Clamp ensures a numerical argument is always

within a specified minimum and maximum range, rounding the value to the

nearest number at the minimum or maximum extreme, if required.

Add the GUIUpdateStats class to the root GUI object in the scene, and then use the Object Inspector

to specify the two label controls for the text data. To do this, simply drag and drop the existing

GUILabel components in the Objector Inspector into the GUILabel fields of the GUIUpdateStats

component (see Figure 8-15).

279CHAPTER 8: Graphical User Interfaces

Finally, give the game a test run to see the labels and status fields in action! Good work! You’ve got

a game up and running with live status indicators. If you take damage, your health indicator will be

reduced to reflect your current health. And your ammo indicator will also reflect the current ammo

status for your weapon. If your weapon is fists/punch (having no ammo), then the ammo indicator

will simply say “None” (see Figure 8-16).

Figure 8-16. Test-run the game with HUD health and ammo indicators

Summary
Splendid. CMOD is now looking really great. We have almost everything we need to complete the

game, and to think about taking it further by adding extra levels, characters, weapons, power-ups,

and more. In this chapter, we added further polish by creating a basic but functional GUI interface,

relying partially on the older GUI class, but also taking into consideration some of Unity’s newer

features, such as 2D sprites, seeing how they can be creatively applied to create GUI graphics that

will perform better overall than the standard GUI functionality. At this point, you should be able to do

the following:

Understand what a GUI is	
Understand what a HUD is	
Render text on-screen using labels and the GUI class	
Understand concepts such as resolution and aspect ratio	
Appreciate the benefits of relative positioning through anchoring	

280 CHAPTER 8: Graphical User Interfaces

Create a relative position framework for your own GUIs	
Understand the size and scale issues involved with aspect ratio	
Use 2D sprites and orthographic cameras to create a main menu	
Use colliders to create hollow button objects	
Integrate your GUI system with the NotificationsManager	
Understand the GUIStyle and GUIContent class related to the GUI class	

281

Chapter 9
Handling Persistent Data

CMOD is looking good now, and we could improve it even further by adding more levels and

environments, such as rooftop levels, basements levels, and even exterior levels. If we did that,

however, it’d be useful for gamers to be able to save their games so that the next time they played,

they could resume from where they left off, preventing them from repeating their actions every

time. In other words, if we’re to expand the game, it’d be helpful for the gamer to have save-game

functionality. Achieving this effectively means we’ll need to store game data persistently on the local

computer, between playing sessions, so that even between powering the computer off and on, the

save-game data persists to be restored. Thankfully, Unity and Mono offer a range of handy features

and classes for handling persistent data, and these will constitute the focus of this chapter as we

implement load-and-save game functionality for CMOD. So let’s go!

Persistent Data: PlayerPrefs, Binary Data, and More
Persistent data is a catch-all term for any game data that should remain across playing sessions.

Unlike most game data, which is volatile and terminates when the game ends, persistent data

is stored locally on the hard drive or other storage, and can be retrieved again for later playing

sessions, even if the computer has been turned off or restarted in the interim. Hence, such data is

said to persist. The most common use of persistent data is for storing game states, allowing gamers

to resume from where they left off. Other uses include storing character profiles, screenshots, voice

recordings, preferences and settings, network information, and also game licensing data. For CMOD,

we’ll be creating save-game functionality only.

Unity offers two main ways to create persistent data: one is to use the Player Preferences class,

which acts like a cross-platform database with key values, and the other is to use system files

(such as binary files and XML files). Before proceeding with our work on CMOD, I want to briefly

consider the options that we won’t be using throughout the rest of this chapter to give you an

overview and appraisal of those features, and to explain why we won’t be using them here.

282 CHAPTER 9: Handling Persistent Data

Player Preferences Class
Perhaps the easiest and quickest way to save persistent data with Unity on all platforms is to use

the PlayerPrefs class. This class abstracts itself from the local file system so that we don’t have

to worry about file names or specific file system paths. Instead, we can treat it like a key-value

database. We write values to the database using integer, float, and string values, and data such as

the game’s brightness, whether the game should run in full-screen mode, the name of the gamer,

and more. And we then read back those values, across playing sessions, by simply querying the

appropriately named keys. As we do this, Unity internally handles all specifics about how data

is written to and read from persistent storage. More information on PlayerPrefs can be found in

the online Unity documentation at https://docs.unity3d.com/Documentation/ScriptReference/
PlayerPrefs.html. Consider Listing 9-1, where some sample data is written to persistent storage

with the PlayerPrefs class.

Listing 9-1. Saving Data with the PlayerPrefs Class

PlayerPrefs.SetString("PlayerName", "John Smith");
PlayerPrefs.SetInt("LastLevel", 10);
PlayerPrefs.SetFloat("Brightness", 0.7f);
PlayerPrefs.Save();

The 	 PlayerPrefs is a static class, meaning it can be accessed anywhere in a

C# script file; its scope is global.

The 	 PlayerPrefs class automatically saves and commits all changes on a clean

application exit, and so in theory, the final call to the Save method is optional.

However, the Save function will not be called automatically if the application

terminates prematurely, such as an unexpected crash. So it’s often good

practice to call the Save method after making PlayerPrefs changes.

Saved data can also be retrieved through the PlayerPrefs class at any time across all playing

sessions using the GetString, GetInt, and GetFloat methods (see Listing 9-2).

Listing 9-2. Loading Data with the PlayerPrefs Class

string Name = PlayerPrefs.GetString("PlayerName");
int LastLevel = PlayerPrefs.SetInt("LastLevel");
float Brightness = PlayerPrefs.SetFloat("Brightness");

Saving and loading data with PlayerPrefs really is as simple as Listings 9-1 and 9-2 show.

From this, the question may arise as to exactly where on the local file system the data is stored.

The answer is: it depends on the user operating system. For Windows users, PlayerPrefs data is

stored in the system registry, and for other systems, it’s stored in local files in different locations.

The Unity online documentation features more information on this. However, the PlayerPrefs class

will not be used further in this chapter for storing CMOD data. This is because PlayerPrefs is

intended for storing only user preferences data—that is, smaller, bite-sized pieces of data for holding

brightness settings, as well as the gamer’s name, game difficulty, full-screen vs. windowed mode,

and more. For CMOD, we’ll need to store a lot more data than this: specifically, the transform data

for nearly every moveable object, including the Player and the Enemies. To achieve this, we must

move away from PlayerPrefs and adopt a custom file-based solution.

https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html

283CHAPTER 9: Handling Persistent Data

Note When saving data to persistent storage, Unity often uses the Company Name and Product Name

values in the Project Settings to produce a unique storage location for your data. Before saving game states,

therefore, be sure to set the Company Name and Product Name to meaningful values from the Player Settings

dialog, which is accessible by choosing Edit ➤ Project Settings ➤ Player from the application menu

(see Figure 9-1).

Figure 9-1. Configuring Company Name and Product Name from the Player Settings dialog

File-Based Persistence
The second and most flexible method for storing persistent data in Unity is to resort to the Mono

Framework for saving data to a file on local storage. Using this method, two main approaches are

available: data can be saved to a binary proprietary file or to a human-readable text-based file like

XML. Both represent file-based forms of persistent storage. The difference rests in whether the

gamer can open the saved file and see and edit the contents. The traditional approach in game

development is to use a proprietary file, primarily to prevent the user from breaking the game by

changing the data—intentionally or accidentally—to invalid values. But it’s also to prevent cheating,

too, which can happen when gamers tweak the data (intentionally giving themselves extra lives, or

more health, or more items).

Unity allows saving to this kind of format by using the BinaryFormatter class. But in this book, we’ll

actually choose the more open and human-readable XML route for creating saved games. There

are two main reasons for this: first, a human-readable XML file allows us to easily debug not only

save-game functionality, but the game in general. It lets us see the value of objects, consolidated

into a single XML file; and we can also change the values and see the changes reflected in-game.

And second, an open save-game file also permits other developers and third parties to easily write

extensions or plug-ins for the game, adding their own data without breaking the XML scheme

already in place. This means we can quickly establish a potential community of “modders” or

“modifiers.” So, for this chapter, we’ll avoid the binary format route, and choose the XML-based

saved-game file. When creating your own games, you’ll need to make judgments about which

284 CHAPTER 9: Handling Persistent Data

method is right for you. If you’re interested in saving games with the BinaryFormatter, a Unity video

tutorial is available at https://unity3d.com/learn/tutorials/modules/beginner/live-training-
archive/persistence-data-saving-loading.

Note File-based saving works well for many deployment types, but for web-player games and web-hosted

games, persistent data becomes more troublesome due to security restrictions. There are several main

options available: 1) Game data can be saved in a server-side database. 2) Game data can be stored inside

a cookie file. 3) Data can be stored in a single XML string that can be passed as a query to the web player.

Further details for saving data with web-based deployments are beyond the scope of this book.

Saving with XML
Saved games for CMOD will be saved in the XML format. XML stands for EXtensible Markup

Language, and it uses a hierarchical text-based structure for saving data. There are alternative

text-based formats available, which are gaining popularity in games today. One is JSON (JavaScript

Object Notation), which features a more abbreviated and slim-line syntax than XML, making it a

particularly attractive option for streaming text-based data across networks. But currently, JSON

is not supported natively by Unity or the Mono Framework (as of version 4.3). This means that you

must rely on custom-made parsers or third-party parsers to read from and write to JSON files. For

CMOD and this book in general, I stick to the native tools and classes that work out-of-the-box with

Unity. Hence, I’ll choose the XML file format, which is powerful, versatile, and long established.

Note A freely available third-party class for parsing JSON data can be found at http://wiki.unity3d.

com/index.php/SimpleJSON. When using third-party code, be sure to read the source file comments and

summary thoroughly.

Let’s now take a look at the saved-game XML file structure to be used for CMOD. In sum, there are

several data items we’ll need to save to offer complete load-and-save functionality. Specifically,

for the Player, we’ll need to save transformation (position, rotation, and scale data), collected cash,

collected weapon (if any), and health. For the Enemy, we’ll store transformation, unique ID (to identify

the Enemy type), and health. This data can be consolidated into a single XML file, as shown in

Listing 9-3 (this sample features only one Enemy alongside Player data for the sake of brevity—though

the “real” file will feature more Enemies).

Listing 9-3. Sample XML Data for a CMOD Saved Game

<?xml version="1.0" encoding="Windows-1252"?>
<GameData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <Enemies>
 <DataEnemy>
 <PosRotScale>
 <X>1.94054472</X>

https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/persistence-data-saving-loading
https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/persistence-data-saving-loading
http://wiki.unity3d.com/index.php/SimpleJSON
http://wiki.unity3d.com/index.php/SimpleJSON
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

285CHAPTER 9: Handling Persistent Data

 <Y>0.019997187</Y>
 <Z>-8.58917</Z>
 <RotX>0</RotX>
 <RotY>129.9697</RotY>
 <RotZ>0</RotZ>
 <ScaleX>1</ScaleX>
 <ScaleY>1</ScaleY>
 <ScaleZ>1</ScaleZ>
 </PosRotScale>
 <EnemyID>3</EnemyID>
 <Health>100</Health>
 </DataEnemy>
 <DataEnemy>
 <PosRotScale>
 <X>8.632575</X>
 <Y>0.019997187</Y>
 <Z>-13.2708778</Z>
 <RotX>0</RotX>
 <RotY>137.86232</RotY>
 <RotZ>0</RotZ>
 <ScaleX>1</ScaleX>
 <ScaleY>1</ScaleY>
 <ScaleZ>1</ScaleZ>
 </PosRotScale>
 <EnemyID>0</EnemyID>
 <Health>200</Health>
 </DataEnemy>
 </Enemies>
 <Player>
 <PosRotScale>
 <X>12.1057281</X>
 <Y>1.05</Y>
 <Z>-17.1096153</Z>
 <RotX>0</RotX>
 <RotY>39.75003</RotY>
 <RotZ>0</RotZ>
 <ScaleX>1</ScaleX>
 <ScaleY>1</ScaleY>
 <ScaleZ>1</ScaleZ>
 </PosRotScale>
 <CollectedCash>200</CollectedCash>
 <CollectedGun>true</CollectedGun>
 <Health>50</Health>
 </Player>
</GameData>

You can view XML files in any text editor, including MonoDevelop. In addition, to improve readability,

MonoDevelop supports syntax highlighting and code folding for XML. To make sure these features

are enabled for XML files in MonoDevelop, select Tools ➤ Options from the MonoDevelop

application menu, and then select the General tab from the Options dialog. Next, enable the Code

Folding option (see Figure 9-2). Figure 9-3 shows an XML file loaded in MonoDevelop, complete with

code folding and syntax highlighting.

286 CHAPTER 9: Handling Persistent Data

Figure 9-2. Enabling Code Folding in MonoDevelop to view XML files

Figure 9-3. Editing XML files in MonoDevelop

287CHAPTER 9: Handling Persistent Data

Getting Started with XML: Serialization
There are two main methods for saving data to XML in Unity using the Mono Framework classes.

One method (the manual method) is to create an XML file in code, node by node, through looping

and iteration, saving each element of data as nodes are created, using a class such as XmlDocument.

The other method (used here) is to use serialization through the XMLSerializer class. By using

serialization, you may effectively stream or snapshot a class in memory, translate it to a text-based

XML version, and then write it to a persistent file—one that can be accessed later in other gaming

sessions to automatically rebuild the class that was saved. Thus, by consolidating all save-game

data into a single class, we can create a save-game state quickly and effectively. This method

can spare us a lot of coding and extra work, but it only works with specific data types (and not all

data types). This means that, before we can work with serialization itself, we’ll need to code some

new custom classes and structures to hold all game data, but using only data types supported by

serialization. We’ll then need to populate this class with valid game data prior to saving to ensure

that all appropriate data is saved. Listing 9-4 lists a new LoadSaveManager class created in the file

LoadSaveManager.cs. This file includes new serializable classes and structures that can be saved to

an XML file.

Listing 9-4. Starting a LoadSaveManager Class

01 //Loads and Saves game state data to and from xml file
02 //---
03 using UnityEngine;
04 using System.Collections;
05 using System.Collections.Generic;
06 using System.Xml;
07 using System.Xml.Serialization;
08 using System.IO;
09 //---
10 public class LoadSaveManager : MonoBehaviour
11 {
12 //Save game data
13 [XmlRoot("GameData")]
14 public class GameStateData
15 {
16 //---
17 public struct DataTransform
18 {
19 public float X;
20 public float Y;
21 public float Z;
22 public float RotX;
23 public float RotY;
24 public float RotZ;
25 public float ScaleX;
26 public float ScaleY;
27 public float ScaleZ;
28 }
29 //---
30 //Data for enemy

288 CHAPTER 9: Handling Persistent Data

31 public class DataEnemy
32 {
33 //Enemy Transform Data
34 public DataTransform PosRotScale;
35 //Enemy ID
36 public int EnemyID;
37 //Health
38 public int Health;
39 }
40 //---
41 //Data for player
42 public class DataPlayer
43 {
44 //Transform Data
45 public DataTransform PosRotScale;
46
47 //Collected cash
48 public float CollectedCash;
49
50 //Has Collected Gun 01?
51 public bool CollectedGun;
52
53 //Health
54 public int Health;
55 }
56 //---
57
58 //Instance variables
59 public List<DataEnemy> Enemies = new List<DataEnemy>();
60
61 public DataPlayer Player = new DataPlayer();
62 }
63
64 //Game data to save/load
65 public GameStateData GameState = new GameStateData();
66
67 //---
68 }
69 //---

	Lines 01–69. Here, in total, a range of classes are defined for holding save-game

data. This includes classes DataTransform, DataEnemy, and DataPlayer.

	Lines 17–27. The DataTransform class defines a complete transform for a game

object using serializable data types, such as float, to hold data that would

normally feature only in a game object’s transform component, which is not

serializable.

289CHAPTER 9: Handling Persistent Data

	Lines 31–55. Both the Player and Enemy classes use DataTransform to store

their transformation data.

	Line 65. The GameStateData class consolidates all Player and Enemy data in the

scene using serializable types. An instance of this class (GameState) is declared

as a public member of the LoadSaveManager class and will be later serialized to

an XML file.

Loading from and Saving to an XML File
The LoadSaveManager class is managerial, insofar as it oversees the general loading and saving

process from and to an XML file. This class features a critical member, namely GameState, which

consolidates all the serializable game data to be saved to a file and loaded from a file. Effectively, the

GameState member will represent a game state in memory, as we’ll see later. The question then arises

as to how this class can be saved to XML and loaded from XML. To achieve this, the LoadSaveManager

class be amended with two new functions. These are listed in Listing 9-5. Comments follow.

Listing 9-5. Adding Load and Save Functionality into the LoadSaveManager Class

01 //---
02 //Saves game data to XML file
03 public void Save(string FileName = "GameData.xml")
04 {
05 //Clear existing enemy data
06 GameState.Enemies.Clear();
07
08 //Call save start notification
09 GameManager.Notifications.PostNotification(this, "SaveGamePrepare");
10
11 //Now save game data
12 XmlSerializer Serializer = new XmlSerializer(typeof(GameStateData));
13 FileStream Stream = new FileStream(FileName, FileMode.Create);
14 Serializer.Serialize(Stream, GameState);
15 Stream.Close();
16
17 //Call save end notification
18 GameManager.Notifications.PostNotification(this, "SaveGameComplete");
19 }
20 //---
21 //Load game data from XML file
22 public void Load(string FileName = "GameData.xml")
23 {
24 //Call load start notification
25 GameManager.Notifications.PostNotification(this, "LoadGamePrepare");
26
27 XmlSerializer Serializer = new XmlSerializer(typeof(GameStateData));
28 FileStream Stream = new FileStream(FileName, FileMode.Open);
29 GameState = Serializer.Deserialize(Stream) as GameStateData;
30 Stream.Close();
31

290 CHAPTER 9: Handling Persistent Data

32 //Call load end notification
33 GameManager.Notifications.PostNotification(this, "LoadGameComplete");
34 }
35 //---

	Line 03. The Save function provides a default function argument, which

makes it optional. This means two call types are valid here, namely Save()

and Save("MyFileName"). The former call will resort to the default string of

"GameData.xml" as the argument.

	Lines 5–15. The Save function begins by clearing out any Enemy data from

the internal arrays, in case a previous game was saved. Then, the class

XMLSerializer is instantiated, passing a valid instance to GameStateData in the

constructor, indicating the class to serialize. The call on line 14 actually serializes

the data in the class to a file stream. And then, finally, the data is committed to

the file and the file is closed using a Stream.Close call at line 15.

	Lines 22–34. The Load function is essentially the inverse of the Save function.

This time an XMLSerializer is instantiated to Deserialize an XML file

stream back to the GameStateData class, allowing the game state data to be

reconstructed from a file.

	Lines 01–35. Notice that throughout the load and save process, the

NotificationsManager is updated by event calls. This will be important later, as

other classes (such as the Player and Enemies) will respond to these invents to

load back their data from the GameStateData object.

Completing the GameManager Class
The LoadSaveManager class is now completed. But on its own it can achieve nothing; since none of

its functionality is integrated into the main game logic or mechanics. Now it’s time to connect the

LoadSaveManager into the GameManager to start making things work together. To start, drag and

drop the LoadSaveManager script from the Project panel onto the GameManager object in the scene

to add a LoadSaveManager component to the object (see Figure 9-4).

291CHAPTER 9: Handling Persistent Data

Next, we’ll amend the GameManager class first coded in Chapter 4 of this book. Consider Listing 9-6,

which lists the complete and final implementation of the GameManager class, integrating with

load-and-save game functionality. Comments follow.

Listing 9-6. Completing the GameManager Class

001 //GameManager
002 //Singleton and persistent object to manage game state
003 //For high level control over game
004 //--
005 using UnityEngine;
006 using System.Collections;
007 //Game Manager requires other manager components
008 [RequireComponent (typeof (NotificationsManager))] //Component for sending and receiving notifications
009 //--
010 public class GameManager : MonoBehaviour
011 {
012 //--
013 //public properties
014 //C# property to retrieve currently active instance of object, if any
015 public static GameManager Instance
016 {
017 get
018 {
019 if (instance == null) instance = new GameObject ("GameManager").

AddComponent<GameManager>(); //create game manager object if required

Figure 9-4. Adding a LoadSaveManager component to the GameManager object in the scene

292 CHAPTER 9: Handling Persistent Data

020 return instance;
021 }
022 }
023 //--
024 //C# property to retrieve notifications manager
025 public static NotificationsManager Notifications
026 {
027 get
028 {
029 if(notifications == null) notifications =

instance.GetComponent<NotificationsManager>();
030 return notifications;
031 }
032 }
033 //--
034 //C# property to retrieve save/load manager
035 public static LoadSaveManager StateManager
036 {
037 get
038 {
039 if(statemanager == null) statemanager =

instance.GetComponent<LoadSaveManager>();
040 return statemanager;
041 }
042 }
043 //--
044 //C# property to retrieve and set input allowed status
045 public bool InputAllowed
046 {
047 get{return bInputAllowed;}
048
049 set
050 {
051 //Set Input
052 bInputAllowed = value;
053
054 //Post notification about input status changed
055 Notifications.PostNotification(this, "InputChanged");
056 }
057 }
058 //--
059 //Private variables
060 //--
061 //Internal reference to single active instance of object - for singleton behaviour
062 private static GameManager instance = null;
063
064 //Internal reference to notifications object
065 private static NotificationsManager notifications = null;
066
067 //Internal reference to Saveload Game Manager

293CHAPTER 9: Handling Persistent Data

068 private static LoadSaveManager statemanager = null;
069
070 //Should load from save game state on level load, or just restart level from defaults
071 private static bool bShouldLoad = false;
072
073 //public variables
074 //--
075 //Can game accept user input?
076 private bool bInputAllowed = true;
077 //--
078 // Called before Start on object creation
079 void Awake ()
080 {
081 //Check if there is an existing instance of this object
082 if((instance) && (instance.GetInstanceID() != GetInstanceID()))
083 DestroyImmediate(gameObject); //Delete duplicate
084 else
085 {
086 instance = this; //Make this object the only instance
087 DontDestroyOnLoad (gameObject); //Set as do not destroy
088 }
089 }
090 //--
091 // Use this for initialization
092 void Start ()
093 {
094 //Add cash collected listener to listen for win condition
095 Notifications.AddListener(this, "CashCollected");
096
097 //Add game menu listeners
098 Notifications.AddListener(this, "RestartGame");
099 Notifications.AddListener(this, "ExitGame");
100 Notifications.AddListener(this, "SaveGame");
101 Notifications.AddListener(this, "LoadGame");
102
103 //If we need to load level
104 if(bShouldLoad)
105 {
106 StateManager.Load(Application.persistentDataPath + "/SaveGame.xml");
107 bShouldLoad=false; //Reset load flag
108 }
109 }
110 //--
111 //Function called when all cash is collected in level
112 public void CashCollected(Component Sender)
113 {
114 //Disable input
115 InputAllowed = false;
116
117 //Pause game
118 Time.timeScale = 0;
119

294 CHAPTER 9: Handling Persistent Data

120 //Show level complete sign
121 GameObject MissionCompleteObject = GameObject.Find ("spr_mission_complete");
122 MissionCompleteObject.GetComponent<SpriteRenderer>().enabled=true;
123 }
124 //--
125 //Restart Game
126 public void RestartGame()
127 {
128 //Load first level
129 Application.LoadLevel(0);
130 }
131 //--
132 //Exit Game
133 public void ExitGame()
134 {
135 Application.Quit();
136 }
137 //--
138 //Save Game
139 public void SaveGame()
140 {
141 //Call save game functionality
142 StateManager.Save(Application.persistentDataPath + "/SaveGame.xml");
143 }
144 //--
145 //Load Game
146 public void LoadGame()
147 {
148 //Set load on restart
149 bShouldLoad=true;
150
151 //Restart Level
152 RestartGame();
153 }
154 //--
155 }

	Lines 39 and 68. The LoadSaveManager is added as a private member and public

property of the GameManager class. Therefore, through the GameManager, each

and every other class has access to the current game state, as well as access to

loading and saving games directly, through the SaveGame and LoadGame functions

implemented further down in the GameManager.

	Line 87. The GameManager is created with the DontDestroyOnLoad property

set to true, meaning the object will persist across scenes and when the current

scene is reloaded. This integrates with the LoadGame function at line 146, in

which the level is first reset to its default, and then loaded from an XML file.

295CHAPTER 9: Handling Persistent Data

	Lines 106 and 142. Here, both the LoadGame and SaveGame functions are called

directly for the LoadSaveManager. Notice that both calls construct a valid

path on the system, using the Application.persistentDataPath member. The

location of this folder varies from computer to computer, and from operating

system to operating system. But it always points to a valid location on the file

system where data may be stored persistently. It’s a good idea, then, to make

use of this system variable whenever saving persistent data to ensure that data

is saved correctly and that your code works across multiple platforms.

Note More information on Application.persistentDataPath can be found in the online Unity

documentation at https://docs.unity3d.com/Documentation/ScriptReference/Application-

persistentDataPath.html.

Completing the PlayerController Class
The GameManager now supports the LoadGame and SaveGame functions. Whenever an object, such

as the main menu, calls these functions via the NotificationsManager, the GameManager will invoke

the appropriate loading and saving behavior implicitly. In fact, if you run CMOD now and test this

code, clicking the save-game button on the main menu should immediately generate a save-game

XML file—a file populated with XML data. This file will be saved in the persistentDataPath, which

could be one among a variety of folders on your system, depending on your system configuration.

You can easily find where the folder is located on your computer by using the Debug.Log function to

print the persistentDataPath variable to the console during Play mode. If you examine the generated

XML file, however, you’ll see it’s just populated with default XML data and not any data related to

the game state specifically. This is because neither the Enemies object nor the Player object ever

populates the LoadSaveManager.GameStateData variable. These classes should effectively take action

when receiving a SaveGamePrepare event call (to save game data), and a LoadGameComplete event call

(to load game data). These events are generated by the LoadSaveManager, shown in Listing 9-5.

So let’s now amend the PlayerController class first to respond to load and save events in a way

that integrates effectively with the LoadSaveManager. See Listing 9-7 for two new event functions

added to the PlayerController class. For brevity and clarity, the rest of the class is not shown here

(the PlayerController is defined in Chapter 5). Remember to register the class as a listener for the

two events with the NotificationsManager in the Start event. Chapter 3 features more information on

the NotificationsManager, if you need a refresher.

Listing 9-7. Completing the PlayerController Class

01 //--
02 //Function called when saving game
03 public void SaveGamePrepare(Component Sender)
04 {
05 //Get Player Data Object
06 LoadSaveManager.GameStateData.DataPlayer PlayerData = GameManager.StateManager.

GameState.Player;
07

https://docs.unity3d.com/Documentation/ScriptReference/Application-persistentDataPath.html
https://docs.unity3d.com/Documentation/ScriptReference/Application-persistentDataPath.html

296 CHAPTER 9: Handling Persistent Data

08 //Fill in player data for save game
09 PlayerData.CollectedCash = Cash;
10 PlayerData.CollectedGun = CollectWeapon.Collected;
11 PlayerData.Health = Health;
12 PlayerData.PosRotScale.X = ThisTransform.position.x;
13 PlayerData.PosRotScale.Y = ThisTransform.position.y;
14 PlayerData.PosRotScale.Z = ThisTransform.position.z;
15 PlayerData.PosRotScale.RotX = ThisTransform.localEulerAngles.x;
16 PlayerData.PosRotScale.RotY = ThisTransform.localEulerAngles.y;
17 PlayerData.PosRotScale.RotZ = ThisTransform.localEulerAngles.z;
18 PlayerData.PosRotScale.ScaleX = ThisTransform.localScale.x;
19 PlayerData.PosRotScale.ScaleY = ThisTransform.localScale.y;
20 PlayerData.PosRotScale.ScaleZ = ThisTransform.localScale.z;
21 }
22 //--
23 //Function called when loading is complete
24 public void LoadGameComplete(Component Sender)
25 {
26 //Get Player Data Object
27 LoadSaveManager.GameStateData.DataPlayer PlayerData =

GameManager.StateManager.GameState.Player;
28
29 //Load data back to Player
30 Cash = PlayerData.CollectedCash;
31
32 //Give player weapon, activate and destroy weapon power-up
33 if(PlayerData.CollectedGun)
34 {
35 //Find weapon powerup in level
36 GameObject WeaponPowerUp = GameObject.Find("spr_upgrade_weapon");
37
38 //Send OnTriggerEnter message
39 WeaponPowerUp.SendMessage("OnTriggerEnter", GetComponent<Collider>(),

SendMessageOptions.DontRequireReceiver);
40 }
41
42 Health = PlayerData.Health;
43
44 //Set position
45 ThisTransform.position = new Vector3(PlayerData.PosRotScale.X,

PlayerData.PosRotScale.Y, PlayerData.PosRotScale.Z);
46
47 //Set rotation
48 ThisTransform.localRotation = Quaternion.Euler(PlayerData.PosRotScale.RotX,

PlayerData.PosRotScale.RotY, PlayerData.PosRotScale.RotZ);
49
50 //Set scale
51 ThisTransform.localScale = new Vector3(PlayerData.PosRotScale.ScaleX,

PlayerData.PosRotScale.ScaleY, PlayerData.PosRotScale.ScaleZ);
52 }
53 //--

297CHAPTER 9: Handling Persistent Data

	Line 03. The SaveGamePrepare event is called on the PlayerController just before

the game state is serialized. This is the opportunity the PlayerController needs to

confirm its current status to the LoadSaveManager. It does this by filling in the

Player transformation data, after retrieving a reference to the serializable Player

data object in the LoadSaveManager.GameStateData object.

	Line 87. The LoadGameComplete event is a little more intricate. The function is

called automatically by the NotificationsManager just after game data has been

loaded from an XML file, and so it represents an opportunity for the Player to

restore its data from the serialized class back into the PlayerController object.

It starts by restoring the Player cash and the collected weapon. In the case of

the weapon, it also ensures that the weapon power-up is removed from the

level if the weapon is collected (as opposed to having the fists/punch weapon),

preventing the Player from collecting the gun weapon and its ammo twice. And

then, finally, it restores Player health and Player transformation data.

Completing the Enemy Class
Just as we needed to update the PlayerController class to respond to load-and-save game events,

we also need to update the Enemy base class, allowing all Enemies to load and save their data. The

newly added functions to the Enemy.cs class are listed in Listing 9-8; these support load and save

functionality. The full class listing (minus loading and saving) is shown in Chapter 7, if you want to

see it. Remember, all source code for CMOD is included in the project files, and the completed

CMOD Unity project is also included in the files for this chapter.

Listing 9-8. Completing the Enemy Class

01 //--
02 //Function called when saving game
03 public void SaveGamePrepare(Component Sender)
04 {
05 //Create enemy data for this enemy
06 LoadSaveManager.GameStateData.DataEnemy ThisEnemy =

new LoadSaveManager.GameStateData.DataEnemy();
07
08 //Fill in data for current enemy
09 ThisEnemy.EnemyID = EnemyID;
10 ThisEnemy.Health = Health;
11 ThisEnemy.PosRotScale.X = ThisTransform.position.x;
12 ThisEnemy.PosRotScale.Y = ThisTransform.position.y;
13 ThisEnemy.PosRotScale.Z = ThisTransform.position.z;
14 ThisEnemy.PosRotScale.RotX = ThisTransform.localEulerAngles.x;
15 ThisEnemy.PosRotScale.RotY = ThisTransform.localEulerAngles.y;
16 ThisEnemy.PosRotScale.RotZ = ThisTransform.localEulerAngles.z;
17 ThisEnemy.PosRotScale.ScaleX = ThisTransform.localScale.x;
18 ThisEnemy.PosRotScale.ScaleY = ThisTransform.localScale.y;
19 ThisEnemy.PosRotScale.ScaleZ = ThisTransform.localScale.z;
20

298 CHAPTER 9: Handling Persistent Data

21 //Add enemy to Game State
22 GameManager.StateManager.GameState.Enemies.Add(ThisEnemy);
23 }
24 //--
25 //Function called when loading is complete
26 public void LoadGameComplete(Component Sender)
27 {
28 //Cycle through enemies and find matching ID
29 List<LoadSaveManager.GameStateData.DataEnemy> Enemies =

GameManager.StateManager.GameState.Enemies;
30
31 //Reference to this enemy
32 LoadSaveManager.GameStateData.DataEnemy ThisEnemy = null;
33
34 for(int i=0; i<Enemies.Count; i++)
35 {
36 if(Enemies[i].EnemyID == EnemyID)
37 {
38 //Found enemy. Now break break from loop
39 ThisEnemy = Enemies[i];
40 break;
41 }
42 }
43
44 //If we reach here and no enemy is found, then it was destroyed when saved.

So destroy now
45 if(ThisEnemy==null){DestroyImmediate(gameObject);return;}
46
47 //Else load enemy data
48 EnemyID = ThisEnemy.EnemyID;
49 Health = ThisEnemy.Health;
50
51 //Set position
52 Agent.Warp(new Vector3(ThisEnemy.PosRotScale.X, ThisEnemy.PosRotScale.Y,

ThisEnemy.PosRotScale.Z));
53
54 //Set rotation
55 ThisTransform.localRotation = Quaternion.Euler(ThisEnemy.PosRotScale.RotX,

ThisEnemy.PosRotScale.RotY, ThisEnemy.PosRotScale.RotZ);
56
57 //Set scale
58 ThisTransform.localScale = new Vector3(ThisEnemy.PosRotScale.ScaleX,

ThisEnemy.PosRotScale.ScaleY, ThisEnemy.PosRotScale.ScaleZ);
59 }
60 //--

	Lines 03–22. As with the Player class, the Enemy class fills in the required Enemy

data, and then uses the List.Add function to add the Enemy data into the

GameStateData class as a serializable object.

299CHAPTER 9: Handling Persistent Data

Tip Lists and dynamic arrays were covered in Chapter 3, when considering event handling.

Figure 9-5. Saving a game from the main menu

	Lines 26–60. The Load function searches through all Enemies in the

GameStateData enemies list, and finds a matching Enemy entry by ID number to

reload the appropriate Enemy data. This functionality therefore depends on each

Enemy in the scene having a unique ID. If two Enemies have a matching ID, then

confusion will arise when restoring Enemies. Notice that to restore the Enemy

position in the scene, the function Agent.Warp is used instead of transform.
position, which was used for the Player. Doing this is consistent with any agent

that relies on pathfinding, as opposed to nonagent objects like the Player, whose

position is “free” and unconstrained by navigation or physics. Chapter 7 covered

pathfinding in more detail. More information on the Warp function can be found

in the online Unity documentation at https://docs.unity3d.com/Documentation/
ScriptReference/NavMeshAgent.Warp.html.

Testing Save and Load Functionality
Now we’ve got enough for everything to work together seamlessly for loading and saving games

in CMOD. In sum, we’ve created a LoadSaveManager that integrates with the GameManager class,

and we also amended the PlayerController and Enemy classes to respond directly to load and save

events through the NotificationsManager. Let’s test this now from Unity. Simply press the Play button

on the editor toolbar, make some changes in-game, and then display the main menu using the

Escape key on the keyboard. Finally, click Save and exit the game (see Figure 9-5).

https://docs.unity3d.com/Documentation/ScriptReference
https://docs.unity3d.com/Documentation/ScriptReference

300 CHAPTER 9: Handling Persistent Data

Before restoring your game in Unity, jump over to the Application.persistentDataPath folder on

your system, and you should find the save-game XML file, which is the result of the save operation.

Open the file in MonoDevelop, ensuring that Code Folding is enabled in the Options dialog, and

inspect the contents of the file to make sure that the data saved as expected (see Figure 9-6).

Checking the file in this way is good debugging practice—it’s a great way to inspect the data being

saved and to check for errors and issues. It’s also what you’ll need to do if you ever want to tweak or

change the data inside the file.

Figure 9-6. Verifying the save-game data

Note If you find that your data is not being loaded or saved as expected after testing, be sure to register

your enemy objects with the notifications manager to receive load-and-save event notifications (see the

companion source code for more details); for example:

//Add listener for saving games

 GameManager.Notifications.AddListener(this, "SaveGamePrepare");

 GameManager.Notifications.AddListener(this, "LoadGameComplete");

Now return to CMOD in Unity and restore the game using the main menu. See Figure 9-7. Voilà!

Excellent work! We’ve created load and save functionality.

301CHAPTER 9: Handling Persistent Data

Summary
Great! You’ve now completed CMOD. It has everything we planned for in the earlier chapters: a

complete environment to explore, an event-handling system, collectible power-ups, a First Person

Controller, weapons, intelligent enemies, a GUI system, and now load and save functionality. In

achieving this, we’ve seen a lot of C# scripting features. But, before moving onto the next chapter to

round things out for this course, let’s recap what we’ve covered in this chapter. By now, you should

be able to do the following:

Understand what persistent data is	
Use the PlayerPrefs class to store basic user preferences and settings	
Understand the limitations of PlayerPrefs	
Be aware of persistent storage alternatives, such as storing to files	
Understand the difference between binary/proprietary files and text-based files	
Be aware of some text-based file formats common in games, such as XML 	
and JSON

Understand serialization	
Create a LoadSaveManager with XML serialization	
Create classes with serializable data types	
Integrate your existing game with a new save-game framework	
Understand the Application.PersistentDataPath variable	

Figure 9-7. Restoring a game from the main menu

303

Chapter 10
Refinements and Improvements

Splendid! You’ve reached the final chapter of the book. CMOD is now complete and feature-filled.

True, it’s a relatively short game with just one level, two weapons, and three enemy types. And many

gamers might even mistake the game for being “simple.” But we know now that this is really more of

a simplification than anything else. Despite being small, CMOD makes use of an extensive range of

Unity features and C# nuances, and these in turn depend on concepts and theory that’s far

from obvious.

In Chapter 2, we constructed a level using the modular building technique, added lightmapping for

static lighting, and configured enemies and power-up objects using Prefabs. In Chapter 3, we laid

the foundations for CMOD in terms of scripting and class design by creating a NotificationsManager

to support an event-driven paradigm, allowing objects to post game events when they happen, and

for registered listeners to be automatically notified of the events. This class came in handy for all

subsequent chapters.

In Chapter 4, we moved forward to create collectible power-up objects in the level, such as health

restore, ammo restore, new weapons, and cash. In doing this, we saw the singleton design pattern,

and implemented camera-aligned billboards for sprite objects. In addition, we created PingPong

motion with coroutines to move the power-ups gently up and down to emphasize their collectible

nature. In Chapter 5, we applied concepts such as sine waves and universal First Person Controllers

to create a cross-platform PlayerController class that allowed the Player to move around the level

in first-person mode.

In Chapter 6, we explored issues of class inheritance and polymorphism by creating a base weapon

class to support a range of derived classes, implementing customized weapon functionality for the

punch and the pistol weapons. Further, these weapons were coded to use physics and ray casting

to attack and deal damage to enemy targets in range when fired. In Chapter 7, the native Unity

NavMesh asset came to our aid as we implemented intelligent Enemy characters that not only found

their way around the level, avoiding obstacles, but also exhibited patrol, chase and attack behaviors

using finite state machines.

304 CHAPTER 10: Refinements and Improvements

Then in Chapter 8, we added a basic but functional GUI (or front end) to the game, allowing the

gamer to exit and restart the game. In achieving this, we explored the limitations of the native

GUI class and saw alternatives, such as the 4.3 sprite features. These allowed us to create a

multiresolution GUI that can position and size itself according to screen size. Finally, in Chapter 9

we added load-and-save game functionality to CMOD. With this, gamers can save and load game

sessions from XML files that persist between game sessions.

In sum, we’ve come a long way and seen C# applied practically in many ways. But, there’s still so

much more to know and see. No single book could possibly cover it all. In fact, you could spend

weeks and months, and even years searching through books and online tutorials, and still find new

concepts and ideas you’d never encountered before, because there’s always more to learn. That’s

the nature of the games industry—and probably every other industry, too! So the aim of this chapter,

which is about looking ahead, is comparatively modest. Its aim is to consider specific ways CMOD

could be reasonably improved or changed using only other concepts and techniques that we’ve not

covered in much detail already, to give you a feel for some additional features and ideas “out there”

in the field. So let’s go!

Level Changing
As it stands, CMOD features only one level or scene. Consequently, the most obvious way in which

CMOD could be expanded is by adding more levels. The general idea would be that, on collecting all

cash power-ups in one level, the Player would progress to the next. And this process would repeat

for as many levels as there were in the game. Or maybe, you’d even create procedurally generated

levels (levels autogenerated at runtime), potentially allowing the game to progress indefinitely—or

until the gamer’s patience expired! Whichever route you choose, you’ll likely want the ability to change

levels in-game, moving from the Player from one level to the next. Thankfully, Unity makes this

task easy with the Application class. This class supports several level loading methods. The most

commonly used is LoadLevel, which looks like Listing 10-1.

Listing 10-1. Loading a Level Using Application.LoadLevel

Application.LoadLevel(1);

Note More information on the Application class can be found in the online Unity documentation at

https://docs.unity3d.com/Documentation/ScriptReference/Application.html.

Levels can be loaded either by number (ID) or by name (that is, the scene name, excluding the .scene

file extension). However, for LoadLevel to work as intended, all levels in the game must be included

in the levels list. This list can be accessed by choosing File ➤ Build Settings from the application

menu. From there, scene files can be dragged and dropped from the Project panel into the levels list.

You can also rearrange the order of scene files within the list by dragging and dropping items. Each

level is assigned a unique number or ID, shown in the right-hand column (see Figure 10-1). This ID

can be passed to the LoadLevel function to load the appropriate level.

https://docs.unity3d.com/Documentation/ScriptReference/Application.html

305CHAPTER 10: Refinements and Improvements

If you were being really ambitious and made a huge level, one that sprawled on for a long time

and included many more meshes and enemies, it may take a long time to load. Generally, it’s not

a good idea to keep the gamer waiting. Today, we’re acclimatized by so many time-compressing

technologies offering instant access to media and on-demand services, that waiting times feel longer

than they ever have. To alleviate waiting times and avoid gamer frustration, Unity allows you to load

levels asynchronously, too—that is, to load levels in the background while the gamer is still playing

the game. To do this, the Application.LoadLevelAsync coroutine can be used (see Listing 10-2).

Listing 10-2. Loading a Level Asynchronously

yield return Application.LoadLevelAsync("ABigLevel");

The type of level loading that we’ve considered so far works well when you need to completely move from

one level to the next in the traditional sense—that is, exiting level X to move to level Y. But sometimes

you’ll make games, like large, open-ended RPGs or flight simulators, in which the environment should be

experienced as one continuous and enormous world that stretches on, seemingly forever. In such

games, you don’t want a transition or change from one discrete level to the next. You don’t want

the user to notice a transition at all. You just want the world to seem complete and integrated, even

though you may have developed it across multiple scene files. In essence, you want to load in a

different scene and add it to the existing one, creating the appearance of a complete and integrated

environment. In this case, you can use the function Application.LoadLevelAdditive or

Application.LoadLevelAdditiveAsync (see Listing 10-3).

Figure 10-1. Adding levels to the levels list

306 CHAPTER 10: Refinements and Improvements

Listing 10-3. Loading Levels Additively

//Loads level 2 into existing level
Application.LoadLevelAdditive(2);

Event Handling
The event-handling system created in Chapter 3 was termed the NotificationsManager. It was

created as a Singleton object. Using this class, a Poster may dispatch a notification about an

event as it happens, such as an enemy-destroyed event, and the NotificationsManager responds

by immediately invoking event calls in any registered Listeners for that event, allowing them to act

as required. By centralizing event handling through a single managerial class, every other class

has an independent and effective way to respond to almost any event without directly affecting

the implementation of any other class. In Chapter 3, the event framework was implemented by

using the SendMessage function of GameObject. This function can be called on a per object basis

and invokes any functions of a matching name on any components attached to the object. See

Chapter 3 for a refresher if required, and also the relevant Unity documentation at

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.SendMessage.html.

The SendMessage function works like the BroadcastMessage function, except that BroadcastMessage

cascades invocation downward through all child objects in the scene hierarchy.

In many situations, as with CMOD, you can get away with using SendMessage and BroadcastMessage

without any problems. But both of these functions rely on deeper underlying code that can be

computationally expensive, leading to performance issues. This primarily (though not exclusively)

results from an internal process known as reflection. If your game makes frequent and extensive

use of either SendMessage or BroadcastMessage, and you’re experiencing performance issues, then

it’s time to seriously rethink your code and to consider alternatives. And indeed, there are many

alternatives.

The biggest problems that we faced when coding the event-handling system was how to invoke

events on listeners that could potentially be of any data type. A Listener could be any kind of class,

and because we can’t know in advance which type it is, then we don’t know which functions it

supports and which functions we can call. The SendMessage and BroadcastMessage methods allow

us to easily get around this problem, because they simply require us to provide a function name by

string, and they execute that function for us across all components in an object, regardless of object

data types—provided the function exists in the first place. So, when considering alternatives for

event handling, we need solutions that will allow us to achieve a similar kind of behavior. There are at

least two possibilities in C: interfaces and delegates.

Interfaces
Interfaces are a powerful feature native to C#, and not Unity specifically. They let you create a

special kind of runtime polymorphism and they offer a solution to effective event handling. Let’s see

how in practice. In short, with a C# interface you start by defining one or more functions together, as

shown in Listing 10-4.

http://docs.unity3d.com/Documentation/ScriptReference/GameObject.SendMessage.html

307CHAPTER 10: Refinements and Improvements

Listing 10-4. Declaring an Interface in C#

public interface IListener
{
 //Event called through listener interface
 void OnEventOccured(EVENT_TYPE EType, int Param);
}

At this point, we’ve defined an interface for a potential event listener. Next, any class can implement

this interface. This means the class guarantees it will implement an OnEventOccured function, as

specified in the IListener interface, as shown in Listing 10-5.

Listing 10-5. Implementing an Interface in C#

public class Listener : MonoBehaviour, IListener
{
 //[... other stuff here]

 //Implement interface - called on event
 public void OnEventOccured(EVENT_TYPE EType, int Param)
 {
 Debug.Log ("My Event Called");
 }
}

Now here, any other class can interface with Listener directly through the IListener interface, without

ever needing to know its true data type. It just needs to know about the IListener interface. Consider

Listings 10-6 and 10-7. These two samples represent two completely separate script files, together

defining a sample event-handling system and a sample Listener, simply for demonstration purposes,

using interfaces. Both of these scripts should be attached to the same object in the scene to test its

functionality in Unity. When you do this, a NotficationsManager will post a notification to a registered

listener on every key press, via interfaces. Notice how this class achieves exactly the same behavior

as the SendMessage and BroadcastMessage functionality we used in Chapter 3, but without the extra

performance cost. Go ahead and try it!

Listing 10-6. NotificationsManager.cs: Defines an Interface and Notifications Manager

//------------------------------------
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
//------------------------------------
public interface IListener
{
 //Event called through listener interface
 void OnEventOccured(NotificationsManager.EVENT_TYPE EType =

NotificationsManager.EVENT_TYPE.ON_ENEMYDESTROYED, int Param = 0);
}

308 CHAPTER 10: Refinements and Improvements

//------------------------------------
public class NotificationsManager : MonoBehaviour
{
 //Define even types here...
 public enum EVENT_TYPE {ON_ENEMYDESTROYED = 0, ON_LEVELRESTARTED = 1,

ON_POWERUPCOLLECTED = 2, ON_KEYPRESS=3};

 //Collection of listeners
 private List<IListener> Listeners = new List<IListener>();
 //------------------------------------
 //Function to add listener
 public void AddListener(IListener lObject)
 {
 //Add listener to list
 Listeners.Add(lObject);
 }
 //------------------------------------
 void PostEvent(EVENT_TYPE EType = EVENT_TYPE.ON_ENEMYDESTROYED, int Param = 0)
 {
 //Notify all listeners
 for(int i=0; i<Listeners.Count; i++)
 Listeners[i].OnEventOccured(EType, Param);
 }
 //------------------------------------
 void Update()
 {
 if(Input.anyKeyDown)
 {
 //Post key press event to all listeners
 PostEvent(EVENT_TYPE.ON_KEYPRESS,0);
 }
 }
 //------------------------------------
}
//------------------------------------

Listing 10-7. Listener.cs: Sample Listener Object

using UnityEngine;
using System.Collections;

public class Listener : MonoBehaviour, IListener
{
 private NotificationsManager NM = null;

 void Start()
 {
 //Get notifications manager
 NM = GetComponent<NotificationsManager>();

 //Add as listener
 NM.AddListener(this);
 }

309CHAPTER 10: Refinements and Improvements

 //Implement interface - called on event
 public void OnEventOccured(NotificationsManager.EVENT_TYPE EType = NotificationsManager.

EVENT_TYPE.ON_ENEMYDESTROYED, int Param = 0)
 {
 Debug.Log ("My Event Called");
 }
}

Note A sample project demonstrating interfaces can be found in the book’s companion files at

Chapter10/Interfaces/.

Delegates
Interfaces simulate polymorphism among classes of different types. Delegates, in contrast, work at

the function or method level, as opposed to the class level. Imagine that you can treat a function

like a variable: you can create a variable and store a reference in it to a function elsewhere, even to a

function in a different class. And then imagine that you could later execute that variable, invoking the

function it references. This is effectively what delegates let you achieve. A delegate is a special object

referencing a function. This means that we can create a NotificationsManager by maintaining an array

of delegates, referencing the functions for many different listener objects. The only standard or rule

the listeners must obey for this to work effectively is that their event functions maintain the same

prototype—that is, has the same argument list and return type. Let’s see this in action across two

different script files: one for the NotificationsManager and one for the Listener (see Listings 10-8 and 10-9).

Then give it a test in Unity.

Listing 10-8. NotificationsManager.cs: Defines an Interface and Notifications Manager Using Delegates

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class NotificationsManager : MonoBehaviour
{
 //Define even types here...
 public enum EVENT_TYPE {ON_ENEMYDESTROYED = 0, ON_LEVELRESTARTED = 1, ON_POWERUPCOLLECTED = 2,

ON_KEYPRESS=3};

 //Declare listener delegate
 public delegate void ListenerDelegate(NotificationsManager.EVENT_TYPE EType, int Param);

 //Array of listener delegates
 private List<ListenerDelegate> Listeners = new List<ListenerDelegate>();

310 CHAPTER 10: Refinements and Improvements

 //Add listener
 public void AddListener(ListenerDelegate Listener)
 {
 Listeners.Add(Listener);
 }

 void PostNotification(NotificationsManager.EVENT_TYPE EType, int Param)
 {
 //Notify all listeners
 for(int i=0; i<Listeners.Count; i++)
 {
 //Call delegate like function
 Listeners[i](EType, Param);
 }
 }

 void Update()
 {
 //Notify event system on keypress
 if(Input.anyKeyDown)
 PostNotification(EVENT_TYPE.ON_KEYPRESS,0);
 }
}

Listing 10-9. Listener.cs: Creates a Listener with Delegates

using UnityEngine;
using System.Collections;

public class Listener : MonoBehaviour
{
 private NotificationsManager NM = null;

 void Start()
 {
 //Get notifications manager
 NM = GetComponent<NotificationsManager>();

 //Add as listener
 NM.AddListener(OnEventCall);
 }

 //Function prototype matches delegate
 public void OnEventCall(NotificationsManager.EVENT_TYPE EType, int Param)
 {
 Debug.Log("Event Called");
 }
}

311CHAPTER 10: Refinements and Improvements

Note You might also want to check out the .NET/Mono delegate framework through the System.Action class.

A sample project demonstrating delegates can be found in the book’s companion files at

Chapter10/Delegates/.

Write Shorter Code
The famous computer scientist Ken Thompson is often attributed as saying, “One of my most

productive days was throwing away 1000 lines of code.” And another computer scientist, Edsger

W. Dijkstra, echoed a similar idea when he said, “Simplicity is a prerequisite for reliability.” Here,

there’s the idea that simplicity is preferred wherever possible. In programming, this often means

not resorting to needless complexity and excess; and keeping your code shorter, tidier, and more

readable, while still being reliable and efficient. Achieving this in practice is actually harder than it

sounds, and it’s often something you develop with experience. But there are tips and techniques

you can use right now to write shorter and clearer C# code that’s often easier to read and maintain.

Some general tips follow.

Ternary Operator
The term ternary is Latin, meaning “composed of three parts.” This name describes the three-part

nature of the ternary operator in C#, which is essentially a form of abbreviation. It is sometimes call

the conditional operator. Often, when coding games, you’ll need to check a specific condition using

an if-else statement. Then, based on the outcome of the check, you’ll need to assign a variable

some specific value, in both the if and the else blocks; something like what’s shown in Listing 10-10.

Listing 10-10. Assigning Variables Based on Conditions

if(DoorClosed == true)
{
 MonsterState = MONSTER_STATE.Idle;
}
else
{
 MonsterState = MONSTER_STATE.Attack;
}

The ternary operator lets you shorten code like this into only one line using the ? and the : symbols.

Using the ternary operator, Listing 10-10 could be abbreviated into Listing 10-11.

Listing 10-11. Using the Ternary Operator

DoorClosed = (DoorClosed == true) ? MONSTER_STATE.Idle : MONSTER_STATE.Attack;

312 CHAPTER 10: Refinements and Improvements

Null-Coalesce Operator
In programming, the value null means nothing, emptiness, oblivion, nothingness. It expresses

invalidity. One common task in programming is to assign a value to a variable on the basis of a null

check, to ensure we’re working only with valid data. Consider Listing 10-12.

Listing 10-12. Check for Null Values on Assignment

if(DroneEnemy != null)
 EnemyReference = DroneEnemy;
else
 EnemyReference = BossEnemy;

This kind of statement could, of course, be shortened using the ternary operator that we’ve seen

already, but for null checks specifically, it can be shortened even further with the null-coalesce

operator, as shown in Listing 10-13.

Listing 10-13. Shortening with Null-Coalesce

DroneEnemy = DroneEnemy ?? BossEnemy;

Automatic Properties
C# properties are useful because they give you the chance to perform additional functionality, such

as validation, when specific variables are set or read in a class. Sometimes, however, you don’t really

need to perform any functionality on setting or getting variables, apart from basic assignment. In

these cases, you could just use a public variable directly instead of a property. But, you may also

want to keep the variable wrapped behind a property anyway, so you can later implement validation

without breaking any existing code. You could do this the long way, as shown in Listing 10-14.

Listing 10-14. Properties as Accessors

class MyData
{
 //Private member
 private string sName;

 //Public property
 public string Name
 {
 get{return sName;}
 set{sName = value;}
 }
}

However, a shorter alternative to write accessor methods like this is using automatic properties.

The equivalent code can be written as shown in Listing 10-15.

313CHAPTER 10: Refinements and Improvements

Listing 10-15. Automatic Properties

class MyData
{
 //Public property
 public string Name{get; set;}
}

We could take this even further and create read-only and write-only automatic properties. Although

the access levels apply only to other classes accessing the properties, and not to the owner class

itself. Listing 10-16 creates a read-only property, and Listing 10-17 creates a write-only property

(if you’d really need such a thing!).

Listing 10-16. Read-Only Automatic Properties

class MyData
{
 //Public property
 public string Name{get; private set;}
}

Listing 10-17. Write-Only Automatic Properties

class MyData
{
 //Public property
 public string Name{private get; set;}
}

C# Features or Quirks?
Let’s now consider some other, more controversial, features of C# that are helpful for coding games,

such as when expanding on CMOD, or are at least useful to know, if nothing else. These features are

controversial in the sense that some developers cannot see or don’t accept their usefulness in any

circumstances, except for the most obscure or remote cases, while others declare their usefulness in

many circumstances. Let’s see what these are.

Private Does Not Mean Inaccessible
Let’s say you declare a class with a private variable, as shown in Listing 10-18. You may think that

the variable is protected in that no other instances could ever access it, but for the instance to which

it belongs. The variable is not public but private, and so surely no other instances can access it,

right? Wrong.

Listing 10-18. A Class with a Private Variable

public class MyClass
{
 private string Name = "DefaultString";
}

314 CHAPTER 10: Refinements and Improvements

Listing 10-19 shows a case where an object can access and edit the private variable of another

instance, as freely as if it were its own variable.

Listing 10-19. Accessing a private variable

public class MyClass
{
 private string Name = "DefaultString";

 void TestFunction()
 {
 MyClass C = new MyClass();
 C.Name ="ah ha";
 }
}

This happens because the privacy variable obtains between classes and not instances. Multiple

instances of the same class can access each other’s private variables. Thus, private variables are

inaccessible only to instances of different classes.

goto is C# Teleportation
There’s one statement in programming that nearly every programmer seems to dislike. It’s been

termed “bad practice” and has received such wide condemnation that it’s easy to wonder why

newer languages like C# even added the feature in the first place. That feature is the infamous goto

statement (pronounced go to), which allows program execution to suddenly divert from its normal

course and jump to a different, specified location in the source file. Thus, it’s a kind of teleport

feature. Some people recommend never using goto at all, because its teleporting nature obfuscates

code, making it difficult to follow and understand. And yet, in moderation, goto can prove useful and

sometimes cleaner for breaking out of loops early (see Listing 10-20).

Listing 10-20. Using goto

void Search(int Index)
{
 int[,] IntArray = new int[4, 2] { { 2, 2 }, { 5, 5 }, { 5, 1 }, { 2, 8 } };

 for(int i = 0; i < IntArray.GetLength(0); i++)
 {
 for (int j = 0; j < IntArray.GetLength(1); j++)
 {
 if (IntArray[i, j].Equals(Index))
 {
 goto Found;
 }
 }
 }

 Found:
 Debug.Log("GameObject Found");
}

315CHAPTER 10: Refinements and Improvements

Static is Omnipresent
The static keyword was considered in Chapter 4, when creating Singleton objects. In short, using the

static keyword, you can add variables that completely cut across instance scope boundaries—that

is, variables that retain their value not for a specific instance of a class, but for all instances. If you

need to create a value that applies to all instances of a class, as though it were a shared variable,

then static variables can come in handy (see Listing 10-21 for use of a static variable in a class).

Listing 10-21. Using Static Variables

using UnityEngine;
using System.Collections;

public class MyClass
{
 //Variable will be shared for all instances
 static public int MyVar = 50;

 //Variable will differ among instances
 public string Name = "";

 //prints static variable to console
 public void PrintMyVar()
 {
 Debug.Log (MyVar);
 }
}

public class Sample : MonoBehaviour
{
 void Start()
 {
 //Delcare instances of MyClass
 MyClass C1 = new MyClass();
 MyClass C2 = new MyClass();

 //Static variable set to 100
 MyClass.MyVar = 100;

 //Both classes will print 100 because they share the variable
 C1.PrintMyVar();
 C2.PrintMyVar();
 }
}

Note Take care with memory management when using static objects. Unity will not automatically clean or

delete static references, even between scene switches.

316 CHAPTER 10: Refinements and Improvements

Braces Define Scope
When thinking about variables and scope, it’s easy to think in terms of global variables living

application-wide, class variables as being class-wide, local variables as being function-wide, and

block variables as existing inside loops and if statements. But the braces symbols { } can be used

inside any function on their own, without the presence of a surrounding loop or if statement in order

to control variable scope, if required (see Listing 10-22).

Listing 10-22. Unconventional Block Scope

void Start()
{

 {
 //Scope inside braces
 string Name = "Bob";
 Debug.Log(Name);
 }

 //Variable not accessible here – will generate a compile error
 Name = "John";
 Debug.Log(Name);
}

Summary
So now we’ve reached the end of this intensive C# course in professional game development

with the Unity engine. We’ve covered a lot of ground. CMOD is completed, and having read this

chapter, you’re now better positioned to make potential improvements and refinements, such as

adding more levels and refining the event system using either interfaces or delegates. In addition,

you’ve seen potential tips and tricks to keep in mind when using C# that can really help boost

your productivity.

Now, although there’s lots more to see and learn (as there always will be), you can still use

and reuse the concepts here, with practically limitless potential. Using only the code and ideas

presented in this book, you can produce amazing results. And I hope that this book brings you

game-development success. So with that said, let me congratulate you on completing the book

and creating a cartoon first-person shooter that rests on solid code—with the potential to be

expanded even further. This is Alan Thorn, signing off.

But before I do so, let’s recap what this chapter has offered. After completing this chapter, you

should be able to do the following:

Understand ways in which CMOD can be expanded	
Know how to load new levels with Application.LoadLevel	
Load levels asynchronously and additively	
Improve the event system with interfaces	

317CHAPTER 10: Refinements and Improvements

See the potential for events and other callbacks by using delegates	
Appreciate the benefits of shortening code and improving its readability	
Use automatic properties	
Understand the ternary operator and the null-coalesce operator	
Understand the limitations of private variables	
Use goto effectively	
Understand the usefulness of static variables	
Understand how braces relate to variable scope	

A ■
Ambient Occlusion (AO), 69

Application.persistentDataPath, 295

Artificial intelligence (AI), 230

Automatic properties, 312

B ■
Batch Rename tool

access, 30

imports, 29

operation, 30–31

source code, 27–28

Billboards, 115

bobbing, 121

cached transforms, 117–118

component, 221

C# script file, 116

rotations

CMOD, Z and X rotations, 118

LateUpdate, 119

Quaternions, 120

vector subtraction, 119

sprite 2D consequences, 115

Box Collider component, 221

BroadcastMessage function, 100

BroadcastMessage method, 306

C ■
Cameras

layers and rendering

CullingMask, 192

Depth and Clear Flags properties, 190–191

First Person Controller, 190

new GameObject, 189

Object Inspector, 191–192

Player weapons, 188

2D graphics, 190

orthographic size

pixel perfection, 194–195

size value, 196

weapon sprite, 194–195

Cash Power-Up

cash sprite, 114–115

GameObject component, structure, 142–143

Powerup_Dollar class, 141

Prefab creation, 143–144

C# features

braces symbols, 316

goto, 314

private variable, 313

static variables, 315

Crazy Mad Office Dude (CMOD), 3.

See also First-person shooter (FPS) game

billboard sprites

application, 51

Sprite assets, 53

Sprite Editor, 51–53

C# features (see C# features)

create project folder, 37

event handling (see Event handling system)

FBX mesh and scale factor, 40–41

import audio, 54

lighting and lightmapping

adding, scene, 65–66

AO, 69

Beast lightmapper, Unity, 64

Bounce Boost and Intensity, 67, 69

directional lights, 66

effects calculation, 3D environment, 64

illumination, 72

information generation, 70–71

Project panel, 70, 72

Index

319

quality, 69

resolution, 70

Spotlights vs. Point Lights, 66

static and moveable objects, 65

three modes, 68

LoadLevel, 304

mesh configuration

Charatcer Controllers, 43

data collision, 43

generate mesh colliders, 43

lightmap UVs, 45

Materials folder, 42

NavMesh (see Navigation Mesh (NavMesh))

Prefabs

Breaking down environment, 61

building method, 57

corner-section meshes, 59–60

environment pieces, 56

GameObjects, 58

mesh reuse, 58

modular environments, 56

T-section, 57

scene geometry, 61–62

texture

advanced settings, 49–50

customization and control, 49

default type, 48

largest size, 46

maximum size, 48

and meshes import, 38–39

power-2 size, 46

properties, 46–47

Culling Mask field, 256

D ■
Damage event, 228

The Drone, 218

E ■
Enemies

artificial intelligence, 230

Chase and Attack states

final Enemy.cs Class, 246

relevant additions, 251

damage dealing

amending Enemy_Drone, 229

configuring color animation, 228

Enemy base class, 223

Enemy_Drone derived class, 223–224

Object Inspector, 225

PingPongSpriteColor.cs, 226

the Drone, 217–218

Enemy Drone prefab

Billboard component, 222

BoxCollider component, 222

Drone sprites, 220

reset object’s position, 219

SpriteShowAnimator components, 221

FSMs, 232

Mr. Big Cheese, 217–218

multiple Enemy types, 253

Patrol State

Coroutine, 239

Enemy_Drone script, 243–244

Enemy in motion, 244

Enemy pathfinding cylinder, 245

state implementation, 236

state relationships, 233

super-intelligent, 231

the Tough Guy, 217–218

truly clever enemy, 231

Event handling system

abstract, 83

action/function, 83

BroadcastMessage function, 100–101

component-based paradigm, 99

C# scripting, 81–82

delegate, 309

fire button, 82

gameplay-level events, 82

Generic classes, 95

IListener interface, 307

.NET dictionary

dynamic arrays, 93

technical requirements, 92

two-dimensional array, 93

NotificationsManager class, 306

compile-time errors, 91

completion, 103

C# script file, 89–90

320 Index

Crazy Mad Office Dude (CMOD) (cont.)

GameObject, 92

keyboard events, 109

MonoBehaviour, 91–92

MonoDevelop, 90

Object Inspector, 109

obj_Poster and obj_Listener, 107–108

Poster and Listener, 111

SendMessage API function, 110

Singleton object, 106–107

Unity project, 105–106

planning

advantages, 89

C# properties, 85

GameManager class, 86–87

health change event, 85

Player class, 84, 86

problem, 87

Set function, 86

PostNotification function, 98

registered listener

AddListener method, 96

Event Notifications, 97

existing entry, 97

MyCustomClass, 98

valid entry, 97

RemoveListener function, 101

RemoveRedundancies method, 102

SendMessage functions, 100

system-level events, 82

EXtensible markup language (XML)

CMOD saved game, 284

Enemy class, 297

GameManager object, 290

JSON, 284

load and save, 299

LoadSaveManager class, 289

manual method, 287

MonoDevelop, 285

PlayerController class, 295

serialization, 287

F ■
First-person controller, 147

capsule mesh, 162

character controllers, 147

AudioListener component, 148

head bobbing, 150

platform specific, 149

Prefab object, 148

Death Animation

Die coroutine, 171

PlayerController, 169–171

Respawn time variable, 171

GUIs, 175

handling cash collection, 163

head bobbing, 159

life and health

health implementation, 171–174

procedural textures, 174–175

multiplatform development

Build Settings dialog, 150

GameObject organization, 154

per-platform texture settings, 151

Platform Dependent Compilation

feature, 153

renaming, 155

tagging objects, 156

texture assets, 151

Unity Remote, 150

platform dependent compilation, 157

Awake event, 158

ControlSwitcher script, 157

#if directive, 158

public variables, 158

Player life and health

Animator components, 167

Death trigger parameter, 168

traditional approach, 166

Unity Animation Editor, 166

sine waves, 158

Standard-Assets package, 152

Unity project, import, 147

First-person shooter (FPS) game

Batch Renaming (see Batch Rename tool)

Cash Power-Ups, 3, 5–6

CMOD

Ammo Power-Up, 6

asset labeling, 17

code comments, 20–21

creation, 2–3

disable Ambient Lighting, 24

Dual-Monitors, 14

Empty Objects, 31

enemy types, 4–5

FBX meshes, 22

321Index

Fists weapon, 7

game environment, 8

GameObject tagging, 18–19

GUI, 9

Health Power-Up, 6–7

incremental backups, 26

interface layout, 12

layers, 20

name and group assets, 15

Pistol weapon, 7

player, 4

Project Wizard, 21

Root GameObjects, 25

Stats Panel, 33

testing resolution and aspect ratio, 34

Weapon Power-Up, 6

design, 2

event-driven programming, 10

FSMs, 11

game development workflow, 12

GDD, 10

GUIs, 11

load-and-save game system, 11

power-ups, 10

virtual functions and polymorphism, 11

G ■
Game design document (GDD), 10

Graphical user interfaces (GUIs)

aspect ratio, 263

games, 255

HUD (see Head-up display (HUD))

main menu

button graphics, 269

button presses, 272

class, 263

screen position, 262

SetOptionsVisible function, 265

size and dimensions, 263

Sprite Renderer component, 265

testing, 267

texture-wire display, 266

orthographic camera, 256

resolution

independence, 259

pixel padding class, 262

positioning component, 260

UI camera configuration, 259

GUI.Label function, 275

GUIUpdateStats class, 278

H ■
Head-up display (HUD)

font rendering features, 274

Player health and ammo status

displaying text and GUIUpdate

class, 274

GUIUpdateStats component, 278

label components, 277

I ■
IListener interface, 307

J, K ■
JavaScript Object Notation (JSON), 284

L ■
LoadLevel function, 304

LoadSaveManager class, 287

M ■
Mathf.Clamp utility function, 278

Mr. Big Cheese, 217–218

N ■
Navigation Mesh (NavMesh)

agent, 73

intelligence, 73

marks, 239

Navigation Static, 75

obstacle avoidance, 73

pathfinding, 73

Radius setting, 78

scene floor, 78–79

scene geometry, 76

tools, 74–75

viewport, 77

NavMeshAgent component, 237

NotificationsManager class, 306

Null-coalesce operator, 312

322 Index

First-person shooter (FPS) game (cont.)

O ■
Object orientation

class, 181

inheritance

abstract base class, 181–182

Boolean, 183

MonoBehaviour, 182

public class variables, 183

Weapon_Gun.cs, 181, 183

Weapon_Punch.cs, 181, 183

instances, 181

OnEventOccured function, 307

P, Q ■
Persistent data

binary proprietary file, 283

definition, 281

human-readable text-based file, 283

PlayerPrefs class, 282

XML (see EXtensible Markup Language (XML))

persistentDataPath, 295

PostNotification function, 98

Power-Ups

ammo-restore, 113

billboards (see Billboards)

bobbing, 128

cash, 113–114, 141

Collider Visibility, 129

collisions

event handling, 132

responses, 133

coroutines

asynchronous functions, 122

Counter Finished, 123

IEnumerator, 123

PingPongDistance class, 125

StartCoroutine, 123

Travel coroutine, 126

WaitForSeconds statement, 124

yield break, 124

deltaTime

distance calculation, 128

frequent Update, 128

moving objects, 127

Time class, 127

time difference, 127

world units per second, 128

GameManager

event handling, 139

NotificationsManager, 135

Powerup_Dollar class, 135

singletons, 136

GameObject.FindGameObjectWithTag

function, 134

health-restore, 113

OnTriggerEnter function, 134

SetActive function, 135

weapon-upgrade, 113

R ■
RemoveListener function, 102

RemoveRedundancies method, 102

S ■
SendMessage function, 100

SendMessage method, 306

Singletons, 113

API function, 138

Awake event, 138

design pattern, 136

instance, 137

private static member, 136

static members, 136

Source and Dest colors, 228

SpriteShowAnimator component, 220

State implementation, 236

Super-intelligent, 231

T, U, V ■
The Tough Guy, 218

Transform component, 219

Transition time, 228

Truly clever enemy, 231

TryGetValue method, 97

W ■
Weapon system

attack animation, 184, 188

cameras (see Cameras)

fists/punch weapon, 179–180, 186

FPS public member, 186

323Index

gun weapon, 180

functionality, 213–214

Weapon_Gun.cs, 210–212

object orientation (see Object orientation)

physics system

detecting enemy hits, 199–200

Physics.Raycast function, 200

ray, 200

ScreenPointToRay, 200

SendMessage function, 201

PlaySpriteAnimation, 186

polymorphism

ancestor class, 206

EquipNextWeapon function, 206

GameObject setup, 201–202

NextWeapon variable, 206

PlayerController, 201–205

prefab, 187

punch weapon

DefaultSprite, 199

EquipWeapon function, 210

functionality, 213–214

gamer input, 199

orthographic camera, 196

SendMessage function, 207

SpriteAnimator, 199

WeaponChange function, 210

Weapon_Punch.cs, 197–198

SpriteRenderers, 186

SpriteShowAnimator.cs, 184–186

X, Y, Z ■
XmlDocument class, 287

XMLSerializer class, 287

324 Index

Weapon system (cont.)

Pro Unity Game
Development with C#

Alan horn

Pro Unity Game Development with C#

Copyright © 2014 by Alan horn

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
 electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6746-1

ISBN-13 (electronic): 978-1-4302-6745-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
 occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Marc Schärer
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Kimberly Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author ...xi

About the Technical Reviewer ...xiii

Acknowledgments .. xv

Introduction .. xvii

Chapter 1: Designing and Preparing ■ ..1

Designing ..2

Game Overview ...2

Game in Depth ...4

Developing the Design: Looking Ahead ...10

Game Development Workflows ...12

Tip #1: Interface Layout ...12

Tip #2: Dual-Monitors ..14

Tip #3: Be Organized ...15

Tip #4: Show Project Wizard on Start-up ...21

Tip #5: Use FBX Meshes ..22

Tip #6: Disable Ambient Lighting ...24

Tip #7: Use Root GameObjects ..25

vi Contents

Tip #8: Incremental Backups ...26

Tip #9: Batch Renaming ..27

Tip #10: Showing Empty Objects in the Editor ..31

Tip #11: Use the Stats Panel..33

Tip #12: Testing Resolution and Aspect Ratio ..34

Conclusion ...35

Chapter 2: Getting Started ■ ...37

Step 1: Create Folders ...37

Step 2: Importing Textures and Meshes ..38

Step 3: FBX Meshes and Scale Factor ...40

Step 4: Configuring Meshes ..42

Step 5: Planning and Configuring Textures ..46

Step 6: Building Sprites ...51

Step 7: Importing Audio ...54

Step 8: Create Prefabs ...55

Step 9: Scene Building ..61

Step 10: Lighting and Lightmapping ...64

Step 11: Building a Navigation Mesh...73

Conclusion ...80

Chapter 3: Event Handling ■ ...81

Events and Responses ..82

Event Handling ..83

Planning Event Handling ...84

Planning a Dedicated Event-Handling System ..87

Getting Started with NotificationsManager ...89

Keeping Track of Notifications with .NET Dictionaries ..92

Generic Classes and C# ...95

Registering As a Listener ..96

viiContents

Posting Notifications ...98

SendMessage and BroadcastMessage ...99

Removing Listeners ...101

Removing Redundancies ...102

Completing NotificationsManager ...103

Working with the NotificationsManager ..105

Conclusion ...111

Chapter 4: Power-Ups and Singletons ■ ...113

Creating the Cash Power-Up ...114

Power-Ups and Billboards ...115

Billboards and Cached Transforms ..117

Billboards and Rotation ...118

Billboards and Bobbing ...121

Coroutines ...122

Power-Up Motion with Coroutines and deltaTime ...125

Exploring deltaTime ...127

Completing Power-Up Bobbing ...128

Power-Up Collision ..129

Handling Collision Events: Getting Started ..132

Collisions and Responses ..133

Introducing the GameManager ..135

GameManager and Singletons ..136

GameManager and Event Handling ...139

Completing the Cash Power-Up ...141

Making a Prefab from the Completed Power-Up ...142

Creating Other Prefabs ..144

Conclusion ...145

viii Contents

Chapter 5: Player Controller ■ ..147

Character Controllers and the First Person Controller ...147

Multiplatform Development ...150

Beginning the Universal First Person Controller ..152

Platform Dependent Compilation ..157

Head Bobbing and Sine Waves ..158

First-Person Capsule Mesh ...162

Handling Cash Collection...163

Life and Death: Getting Started ...166

Making Death: Scripting with Mecanim ..169

Implementing Health ...171

Health and Damage: Procedural Textures ...174

GUIs ...175

Conclusion ...177

Chapter 6: Weapons ■ ...179

Weapons Overview ..179

Object Orientation: Classes and Instances ..180

Object Orientation: Inheritance ..181

Animations, Frames, and Prefabs ..184

Cameras: Layers and Rendering ...188

Cameras: Orthographic Size ..194

Weapon Implementation: Punching ...196

Physics and Damage Dealing ..199

Weapon Changing and Polymorphism ...201

Completing the Punch and Gun Weapons ...207

Conclusion ...215

ixContents

Chapter 7: Enemies ■ ..217

Meet the Bad Guys ..217

Starting the Enemy Drone Prefab ..219

Coding Enemy Damage ...222

Improving Damage Dealing: Feedback ..225

Enemies, Intelligence, and Philosophical Zombies ..230

Finite State Machines (FSMs) ..232

Changing Between States ...233

Preparing for State Implementation ..236

The Patrol State ...239

Refining the Patrol State ...242

The Chase and Attack States...246

Adding More Enemy Types ..253

Summary ...254

Chapter 8: Graphical User Interfaces ■ ..255

GUIs in Games ...255

Getting Started with GUIs ..256

Resolution Dependence and Independence ..258

Main Menu and Aspect Ratio ...263

Testing the Main Menu ..267

Adding Buttons to the Main Menu ...269

Handling Button Presses ...272

HUD: Ammo and Health Statuses ..274

Summary ...279

Chapter 9: Handling Persistent Data ■ ...281

Persistent Data: PlayerPrefs, Binary Data, and More ..281

Player Preferences Class ... 282

File-Based Persistence .. 283

x Contents

Saving with XML ..284

Getting Started with XML: Serialization ...287

Loading from and Saving to an XML File ...289

Completing the GameManager Class ..290

Completing the PlayerController Class ..295

Completing the Enemy Class ...297

Testing Save and Load Functionality ...299

Summary ...301

Chapter 10: Refinements and Improvements ■ ..303

Level Changing ..304

Event Handling ..306

Interfaces ... 306

Delegates ... 309

Write Shorter Code ..311

Ternary Operator .. 311

Null-Coalesce Operator.. 312

Automatic Properties ... 312

C# Features or Quirks? ..313

Private Does Not Mean Inaccessible ... 313

goto is C# Teleportation ... 314

Static is Omnipresent .. 315

Braces Define Scope ... 316

Summary ...316

Index ...319

xi

About the Author

Alan Thorn is a freelance game developer and author with over 12 years

of industry experience. He is the founder of London-based game studio

Wax Lyrical Games, and is the creator of the award-winning adventure

game Baron Wittard: Nemesis of Ragnarok. He has worked freelance on

over 500 projects worldwide, including games, simulators, kiosks, and

augmented reality software for game studios, museums, and theme

parks. He is currently working on an upcoming adventure game, Mega

Bad Code.

Alan has also spoken on game development at venues throughout

Europe, and is the author of 11 books on game development, including

Learn Unity for 2D Game Development (Apress, 2013), Unity 4

Fundamentals (Focal Press, 2013), and UDK Game Development (Cengage Learning, 2011). He is

also a frequent contributor at the online video training library 3DMotive.com. More information on

Alan Thorn and Wax Lyrical Games can be found at www.alanthorn.net and www.waxlyricalgames.com,

as well as Alan’s YouTube channel at http://goo.gl/xwD0U4 and on Twitter at https://twitter.com/thorn_alan.

www.alanthorn.net
www.waxlyricalgames.com
http://goo.gl/xwD0U4
https://twitter.com/thorn_alan

xiii

About the Technical

Reviewer

Marc Schärer is an interactive media software engineer creating

cutting-edge interactive media experiences for training, education, and

entertainment with his company, Gayasoft (www.gayasoft.net), located

in Switzerland, using Unity since its early days in 2007.

Marc has a strong background in 3D graphics, network technology,

software engineering, and interactive media. Starting programming at

the age of 11, he later studied computer science and computational

science and engineering at the Swiss Federal Institute of Technology

Zurich before working with various teams in North America, Oceania,

and Japan to create compelling interactive experiences.

With the rise of serious games, interactive education, and immersive

experiences, Gayasoft’s focus is on researching options and

technologies for the next generation of interactive and immersive

experiences, applying state-of-the-art augmented and virtual reality

(AR/VR) technologies (such as Vuforia, Metaio, and Oculus Rift) and intuitive, innovative input

technologies (such as Razer Hydra, STEM, Thalmic Myo, Leap Motion, and Emotive Insight).

www.gayasoft.net

xv

Acknowledgments

This book would not have been possible if it hadn’t been for the efforts and fine work of many

people, all of whom were a pleasure to work with. There are simply too many people and I can’t list

them all here. But I feel special mention should go to: Michelle Lowman for helping to get this book

started in the first place, Kevin Shea for keeping things on track, and Marc Schärer for ensuring

technical correctness. In addition, I’d like to thank Douglas Pundick, Tim Moore, Kimberly Burton,

and Dhaneesh Kumar for their editorial and production work; as well as everybody else at Apress.

And finally, I’d like to thank you, the reader, for purchasing this book and taking the time to improve

your C# skills. I hope the book proves highly useful for you.

—Alan Thorn

2014, London

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction
	Index

